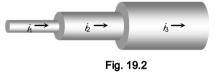
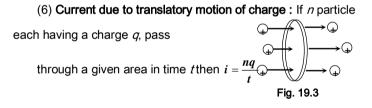

Chapter 19 **Current Electricity**

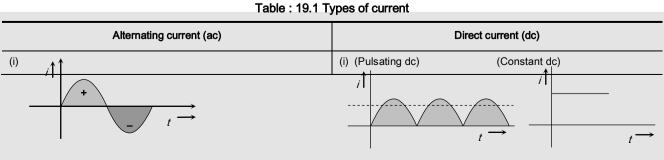
Electric Current

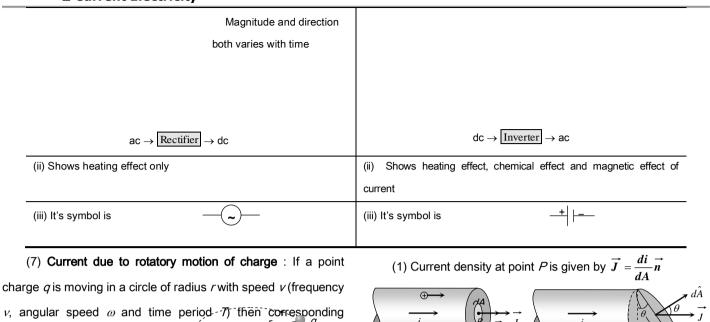
(1) The time rate of flow of charge through any crosssection is called current. $i = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$. If flow is uniform then $i = \frac{Q}{t}$. Current is a scalar quantity. It's S.I. unit is *ampere* (A) and C.G.S. unit is emu and is called biot (Bi), or ab ampere. 1A = (1/10) Bi (ab amp.)


(2) Ampere of current means the flow of 6.25 \times 10¹⁸ electrons/sec through any cross-section of the conductor.


(3) The conventional direction of current is taken to be the direction of flow of positive charge, *i.e.* field and is opposite to

(4) The net charge in a current carrying conductor is zero.


(5) For a given conductor current does not change with change in cross-sectional area. In the following figure $\dot{h} = \dot{h} = \dot{h}$



If *n* particles each having a charge *q* pass per second per unit area, the current associated with cross-sectional area A is i = nqA

If there are *n* particle per unit volume each having a charge q and moving with velocity ν , the current thorough, cross section A is i = nqvA

(2) If the cross-sectional area is not normal to the current, but makes an angle θ with the direction of current then

Fig. 19.5

 $dA\cos\theta$

$$J = \frac{di}{dA\cos\theta} \Rightarrow di = JdA\cos\theta = \vec{J}.\vec{dA} \Rightarrow i = \int \vec{J} \cdot \vec{dA}$$

(3) If current density \vec{J} is uniform for a normal crosssection \vec{A} then $J = \frac{i}{A}$

(4) Current density \vec{J} is a vector quantity. It's direction is same as that of \vec{E} . It's S.I. unit is *amp/m*² and dimension [*L*⁻²*A*].

(5) In case of uniform flow of charge through a crosssection normal to it as $i = nqvA \implies J = \frac{l}{A} = nqv$.

(6) Current density relates with electric field as $\vec{J} = \sigma \vec{E} = \frac{E}{2}$; where σ = conductivity and ρ = resistivity or specific resistance of substance.

Drift Velocity

Drift velocity is the average uniform velocity acquired by free electrons inside a metal by the application of an electric field which is responsible for current through it. Drift velocity is very small it is of the order of 10-4 m/s as compared to thermal speed (~ $10^5 m/s$) of electron tomperature.

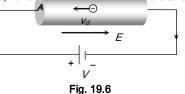


Fig. 19.4 (8) Current carriers : The charged particles whose flow in a definite direction constitutes the electric current are called

(i) Solids : In solid conductors like metals current carriers are free electrons.

current carriers. In different situation current carriers are

(ii) Liquids : In liquids current carriers are positive and negative ions.

(iii) Gases : In gases current carriers are positive ions and free electrons.

(iv) Semi conductor : In semi conductors current carriers are holes and free electrons.

Current Density (J)

current $i = qv = \frac{q}{T} = \frac{qv}{2\pi r} = \frac{q\omega}{2\pi}$

different.

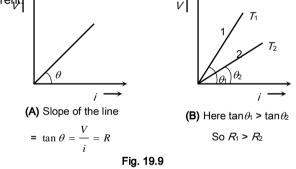
Current density at any point inside a conductor is defined as a vector having magnitude equal to current per unit area surrounding that point. Remember area is normal to the direction of charge flow (or current passes) through that point.

time

relaxation

metallic lattice defined as mean free path $\frac{\text{mean free path}}{\text{r.ms. velocity of electrons}} = \frac{\lambda}{v_{ms}}$. With rise in temperature v_{rms} increases consequently τ decreases.

is


(2) Mobility : Drift velocity per unit electric field is called mobility of electron *i.e.* $\mu = \frac{v_d}{E}$. It's unit is $\frac{m^2}{volt - \sec}$.

Ohm's Law

If the physical conditions of the conductor (length, temperature, mechanical strain etc.) remains some, then the current flowing through the conductor is directly proportional to the potential difference across it's two ends *i.e.* $i \propto V \Rightarrow$ V = iR where R is a proportionality constant, known as electric resistance.

(1) Ohm's law is not a universal law, the substances, which obey ohm's law are known as ohmic substance.

(2) Graph between V and i for a metallic conductor is a straight line as shown. At different temperatures V-i curves are different

(3) If diameter (d) of a conductor is doubled, then drift velocity of electrons inside it will not change. +

Fig. 19.7

If suppose for a conductor

A = Area of cross-section

 $i = neAv_d$ we can also write

area of cross-section $|v_d \propto$

velocity.

n = Number of electron per unit volume of the conductor

i = current, *J* = current density, ρ = specific resistance, σ =

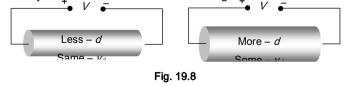
(1) The direction of drift velocity for electron in a metal is

 $v_d \propto E$ *i.e.*, greater the electric field, larger will be the drift

(2) When a steady current flows through a conductor of

 $A_1 < A_2$ so $v_{d_1} > v_{d_2}$

non-uniform cross-section drift velocity varies inversely with


opposite to that of applied electric field (*i.e.* current density J).

conductivity $\left(\sigma = \frac{1}{\rho}\right)$ then current relates with drift velocity as

V = potential difference across the conductor

E = electric field inside the conductor

 $v_d = \frac{i}{neA} = \frac{J}{ne} = \frac{\sigma E}{ne} = \frac{E}{\rho ne} = \frac{V}{\rho \ln e} .$

(1) **Relaxation time** (τ) : The time interval between two successive collisions of electrons with the positive ions in the

(3) The device or substances which don't obey ohm's law e.q. gases, crystal rectifiers, thermoionic valve, transistors etc. are known as non-ohmic or non-linear conductorsystar these V-i atifi a curve is not linear.

Static resistance $R_{st} = \frac{V}{i} = \frac{1}{\tan \theta}$

V

Fig. 19.10

UNIVERSAL

1040 Current Electricity

Dynamic resistance
$$R_{dyn} = \frac{\Delta V}{\Delta I} = \frac{1}{\tan \phi}$$

Resistance

(1) The property of substance by virtue of which it opposes the flow of current through it, is known as the resistance.

(2) Formula of resistance : For a conductor if /= length of a conductor A = Area of cross-section of conductor, n = No. of free electrons per unit volume in conductor, τ = relaxation time then resistance of conductor $R = \rho \frac{l}{A} = \frac{m}{ne^2 \tau} \cdot \frac{l}{A}$; where ρ = resistivity of the material of conductor

(3) Unit and dimension : It's S.I. unit is *Volt/Amp.* or *Ohm* (Ω). Also 1 *ohm* = $\frac{1volt}{1Amp} = \frac{10^8 emu \text{ of potential}}{10^{-1} emu \text{ of current}} = 10^9 emu \text{ of}$ resistance. It's dimension is $[ML^2T^{-3}A^{-2}]$.

(4) **Dependence of resistance :** Resistance of a conductor depends upon the following factors.

(i) Length of the conductor : Resistance of a conductor is directly proportional to it's length *i.e.* $R \propto I$ and inversely proportional to it's area of cross-section *i.e.* $R \propto \frac{1}{A}$

(ii) Temperature : For a conductor

Resistance ∞ temperatur e .

If R_0 = resistance of conductor at $0^{\circ}C$

 R_t = resistance of conductor at $t^{\circ}C$

and α , β = temperature co-efficient of resistance

then $R_t = R_0(1 + \alpha t + \beta t^2)$ for $t > 300^\circ C$ and

$$\boldsymbol{R}_{t} = \boldsymbol{R}_{0}(1 + \boldsymbol{\alpha} t) \text{ for } t \leq 300^{\circ} \boldsymbol{C} \text{ or } \boldsymbol{\alpha} = \frac{\boldsymbol{R}_{t} - \boldsymbol{R}_{0}}{\boldsymbol{R}_{0} \times t}$$

If R_1 and R_2 are the resistances at $t_1 \circ C$ and $t_2 \circ C$ respectively then $\frac{R_1}{R_2} = \frac{1 + \alpha t_1}{1 + \alpha t_2}$.

The value of α is different at different temperature. Temperature coefficient of resistance averaged over the temperature range $t_1 \circ C$ to $t_2 \circ C$ is given by $\alpha = \frac{R_2 - R_1}{R_1(t_2 - t_1)}$ which gives $R_2 = R_1 [1 + \alpha (t_2 - t_1)]$. This formula gives an approximate value.

Table 19.2 : Variation of resistance of some electrical material

with	tem	peratu	re
------	-----	--------	----

Material	Temp. coefficient of resistance (α)	Variation of resistance with temperature rise
Metals	Positive	Increases
Solid non-metal	Zero	Independent
Semi-conductor	Negative	Decreases
Electrolyte	Negative	Decreases
lonised gases	Negative	Decreases
Alloys	Small positive value	Almost constant

Resistivity (ρ), Conductivity (σ) and Conductance (C)

(1) **Resistivity :** From $R = \rho \frac{l}{A}$; If l = 1 m, $A = 1 m^2$ then

 $R = \rho$ *i.e.* resistivity is numerically equal to the resistance of a substance having unit area of cross-section and unit length.

(i) Unit and dimension : It's S.I. unit is *ohm* × *m* and dimension is $[ML^3T^{-3}A^{-2}]$

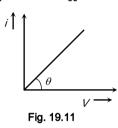
(ii) It's formula :
$$\rho = \frac{m}{ne^2\tau}$$

(iii) Resistivity is the intrinsic property of the substance. It is independent of shape and size of the body (*i.e.* / and *A*).

(iv) For different substances their resistivity is also different *e.g.* ρ_{silver} = minimum = 1.6 × 10⁻⁸ Ω -*m* and ρ_{fused} _{quartz} = maximum $\approx 10^{16} \Omega$ -*m*

$$ho_{insulator}$$
 > ho_{alloy} > $ho_{semi-conductor}$ > $ho_{conductor}$ (Maximum for fused quartz)

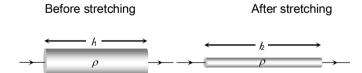
(v) Resistivity depends on the temperature. For metals $\rho_t = \rho_0 (1 + \alpha \Delta t)$ *i.e.* resitivity increases with temperature.

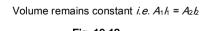

(vi) Resistivity increases with impurity and mechanical stress.

(vii) Magnetic field increases the resistivity of all metals except iron, cobalt and nickel.

(viii) Resistivity of certain substances like selenium, cadmium, sulphides is inversely proportional to intensity of light falling upon them.

(2) **Conductivity** : Reciprocal of resistivity is called conductivity (σ) *i.e.* $\sigma = \frac{1}{\rho}$ with unit *mho/m* and dimensions $[M^{-1}L^{-3}T^{3}A^{2}].$


(3) **Conductance** : Reciprocal of resistance is known as conductance. $C = \frac{1}{R}$ It's unit is $\frac{1}{\Omega}$ or Ω^{-1} or "Siemen".



Stretching of Wire

If a conducting wire stretches, it's length increases, area of cross-section decreases so resistance increases but volume remain constant.

Suppose for a conducting wire before stretching it's length = h, area of cross-section = A_1 , radius = r_1 , diameter = d_1 , and resistance $R_1 = \rho \frac{l_1}{A_1}$

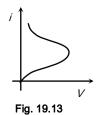
After stretching length = l_2 , area of cross-section = A_2 , radius = l_2 , diameter = d_2 and resistance = $R_2 = \rho \frac{l_2}{A_2}$ Ratio of resistances before and after stretching

$$\frac{R_1}{R_2} = \frac{l_1}{l_2} \times \frac{A_2}{A_1} = \left(\frac{l_1}{l_2}\right)^2 = \left(\frac{A_2}{A_1}\right)^2 = \left(\frac{r_2}{r_1}\right)^4 = \left(\frac{d_2}{d_1}\right)^2$$
(1) If length is given then $R \propto l^2 \Rightarrow \frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2$

(2) If radius is given then $R \propto \frac{1}{r^4} \Rightarrow \frac{R_1}{R_2} = \left(\frac{r_2}{r_1}\right)^4$

Electrical Conducting Materials For Specific Use

(1) **Filament of electric bulb :** Is made up of tungsten which has high resistivity, high melting point.

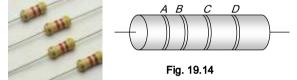

(2) Element of heating devices (such as heater, geyser or press) : Is made up of nichrome which has high resistivity and high melting point.

(3) Resistances of resistance boxes (standard resistances)
: Are made up of alloys (manganin, constantan or nichrome)
these materials have moderate resistivity which is practically
independent of temperature so that the specified value of
resistance does not alter with minor changes in temperature.

(4) **Fuse-wire :** Is made up of tin-lead alloy (63% tin + 37% lead). It should have low melting point and high resistivity. It is used in series as a safety device in an electric circuit and is designed so as to melt and thereby open the circuit if the current exceeds a predetermined value due to some fault. The function of a fuse is independent of its length.

Safe current of fuse wire relates with it's radius as $i \propto r^{3/2}$.

(5) **Thermistors** : A thermistor is a heat sensitive resistor usually prepared from oxides of various metals such as nickel, copper, cobalt, iron etc. These compounds are also semiconductor. For thermistors α is very high which may be positive or negative. The resistance of thermistors changes very rapidly with change of temperature.

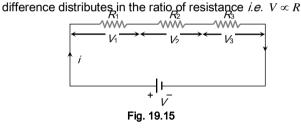

0	Orange	3	10 ³
Ŷ	Yellow	4	104
G	Green	5	10 ⁵
В	Blue	6	10 ⁶
V	Violet	7	107
G	Grey	8	10 ⁸
W	White	9	10 ⁹

Thermistors are used to detect small temperature change and to measure very low temperature.

Colour Coding of Resistance

To know the value of resistance colour code is used. These code are printed in form of set of rings or strips. By reading the values of colour bands, we can estimate the value of resistance.

The carbon resistance has normally four coloured rings or bands


To remember the sequence of colour code following sentence should kept in memory.

B B ROY Great Britain Very Good Wife.

Grouping of Resistance

(1) Series grouping

(i) Same current flows through each resistance but potential

Colour band *A* **and** *B* : Indicate the first two significant figures of resistance in *ohm*.

Band *C*: Indicates the decimal multiplier *i.e.* the number of zeros that follows the two significant figures *A* and *B*.

Band D: Indicates the tolerance in percent about the indicated value or in other words it represents the percentage accuracy of the indicated value.

The tolerance in the case of gold is \pm 5% and in silver is \pm 10%. If only three bands are marked on carbon resistance, then it indicate a tolerance of 20%.

Table 19.3 : Colour code for carbon resistance

Letters as an aid to memory	Colour	Figure (<i>A</i> , <i>B</i>)	Multiplier (C)
В	Black	0	10°
В	Brown	1	10 ¹
R	Red	2	10 ²

(ii) $R_{eq} = R_1 + R_2 + R_3$ equivalent resistance is greater than the maximum value of resistance in the combination.

(iii) If *n* identical resistance are connected in series $R_{eq} = nR$ and potential difference across each resistance $V' = \frac{V}{n}$

(2) Parallel grouping

(i) Same potential difference
 appeared across each resistance
 but current distributes in the
 reverse ratio of their resistance

i.e.
$$i \propto \frac{1}{R}$$

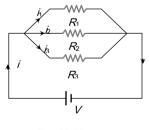
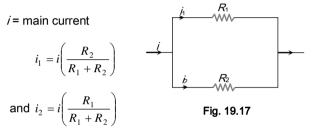


Fig. 19.16

(ii) Equivalent resistance is given by $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

or
$$R_{eq} = (R_1^{-1} + R_2^{-1} + R_3^{-1})^{-1}$$
 or $R_{eq} = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_2 R_3}$

Equivalent resistance is smaller than the minimum value of resistance in the combination.


(iv) If two resistance in parallel

 $R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{\text{Multiplication}}{\text{Addition}}$

(v) Current through any resistance

$$i' = i \times \left[\frac{\text{Resistance of opposite branch}}{\text{Total resistance}} \right]$$

Where / = required current (branch current),

(vi) In *n* identical resistance are connected in parallel

$$R_{eq} = \frac{R}{n}$$
 and current through each resistance $i = \frac{i}{n}$

Cell

The device which converts chemical energy into electrical energy is known as electric cell. Cell is a source of constant emf but not constant current.

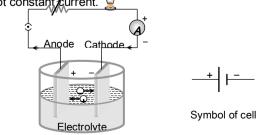
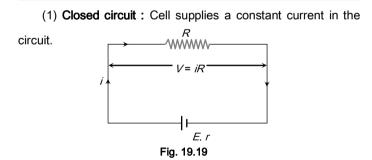


Fig. 19.18


(1) **Emf of cell (***E***)** : The potential difference across the terminals of a cell when it is not supplying any current is called it's emf.

(2) **Potential difference (**V**)** : The voltage across the terminals of a cell when it is supplying current to external resistance is called potential difference or terminal voltage. Potential difference is equal to the product of current and resistance of that given part *i.e.* V = iR.

(3) **Internal resistance** (*r*) : In case of a cell the opposition of electrolyte to the flow of current through it is called internal resistance of the cell. The internal resistance of a cell depends on the distance between electrodes ($r \propto d$), area of electrodes [$r \propto (1/A)$] and nature, concentration ($r \propto C$) and temperature of electrolyte [$r \propto (1/$ temp.)].

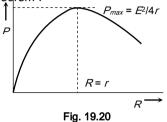
A cell is said to be ideal, if it has zero internal resistance.

Cell in Various Positions

(i) Current given by the cell
$$i = \frac{E}{R+r}$$

- (ii) Potential difference across the resistance V = iR
- (iii) Potential drop inside the cell = ir
- (iv) Equation of cell E = V + ir (E > V)
- (v) Internal resistance of the cell $r = \left(\frac{E}{V} 1\right) \cdot R$
- (vi) Power dissipated in external resistance (load)

UNIVERSAL


1044 Current Electricity

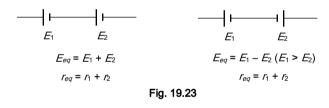
$$P = Vi = i^2 R = \frac{V^2}{R} = \left(\frac{E}{R+r}\right)^2 .R$$

Power delivered will be maximum when R=r so $P_{\rm max}=\frac{E^2}{4\,r}\,. \label{eq:Pmax}$

This statement in generalised from is called "maximum

power transfer theorem".

(i) Maximum current (called short circuit current) flows momentarily $i_{sc} = \frac{E}{r}$


(ii) Potential difference V = 0

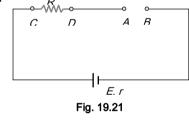
Grouping of Cells

Group of cell is called a battery.

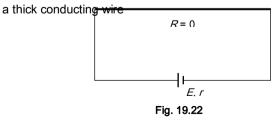
In series grouping of cell's their emf's are additive or subtractive while their internal resistances are always additive. If dissimilar plates of cells are connected together their emf's are added to each other while if their similar plates are connected together their emf's are subtractive.

(1) **Series grouping :** In series grouping anode of one cell is connected to cathode of other cell and so on. If *n* identical cells are connected in series $E, r \in E, r$

(i) Equivalent emf of the combination $E_{eq} = nE$

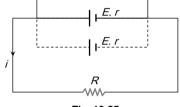

(ii) Equivalent internal resistance $r_{eq} = nr$

(iii) Main current = Current from each cell $= i = \frac{nE}{R+nr}$


(iv) Potential difference across external resistance V = iR

(vii) When the cell is being charged *i.e.* current is given to the cell then E = V - ir and E < V.

(2) **Open circuit**: When no current is taken from the cell it is said to be in open circuit



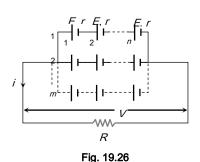
- (i) Current through the circuit i = 0
- (ii) Potential difference between A and B, $V_{AB} = E$
- (iii) Potential difference between C and D, $V_{CD} = 0$
- (3) Short circuit : If two terminals of cell are join together by

(v) Potential difference across each cell $V = \frac{V}{n}$ (vi) Power dissipated in the external circuit $= \left(\frac{nE}{R+nr}\right)^2 R$ (vii) Condition for maximum power R = nr and $P_{\text{max}} = n\left(\frac{E^2}{4r}\right)$

(2) Parallel grouping : In parallel grouping all anodes are connected at one point and all cathode are connected together at other point. If *n* identical cells are <u>connected</u> in parallel

- (i) Equivalent emf $E_{eq} = E$
- (ii) Equivalent internal resistance $R_{eq} = r/n$
- (iii) Main current $i = \frac{E}{R + r/n}$

(iv) potential difference across external resistance = p.d. across each cell = V = iR


(v) Current from each cell $i = \frac{i}{n}$

(vi) Power dissipated in the circuit $P = \left(\frac{E}{R+r/n}\right)^2 R$

(vii) Condition for max. power is R = r/n and $P_{\rm max} = n \left(\frac{E^2}{4r} \right)$

(viii) This type of combination is used when nr>> R

(3) **Mixed Grouping :** If *n* identical cell's are connected in a row and such *m* row's are connected in parallel as shown.

(i) Equivalent emf of the combination $E_{eq} = nE$

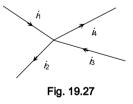
(ii) Equivalent internal resistance of the combination $r_{eq} = \frac{nr}{m} \label{eq:req}$

(iii) Main current flowing through the load $i = \frac{nE}{R + \frac{nr}{mR}} = \frac{mnE}{mR + nr}$

$$R + \frac{m}{m} = \frac{mR + m}{m}$$

(iv) Potential difference across load V = iR

- (v) Potential difference across each cell $V' = \frac{V}{n}$
- (vi) Current from each cell $i' = \frac{i}{n}$


(vii) Condition for maximum power
$$R = \frac{nr}{m}$$

and
$$P_{\text{max}} = (mn) \frac{E^2}{4r}$$

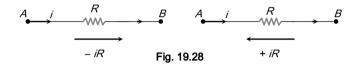
(viii) Total number of cell = mn

Kirchoff's Laws

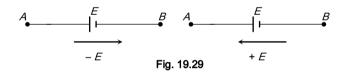
(1) **Kirchoff's first law :** This law is also known as junction rule or current law (*KCL*). According to it the algebraic sum of currents meeting at a junction is zero *i.e.* $\sum i = 0$.

In a circuit, at any junction the sum of the currents entering the junction must equal the sum of the currents leaving the junction. $i_1 + i_3 = i_2 + i_4$

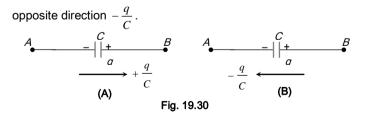
(ii) This law is simply a statement of "*conservation of charge*".


(2) **Kirchoff's second law :** This law is also known as loop rule or voltage law (KVL) and according to it "the algebraic sum of the changes in potential in complete traversal of a mesh (closed loop) is zero", *i.e.* $\Sigma V = 0$

(i) This law represents "conservation of energy".


(ii) If there are *n* meshes in a circuit, the number of independent equations in accordance with loop rule will be (n-1).

(3) Sign convention for the application of Kirchoff's law : For the application of Kirchoff's laws following sign convention are to be considered


(i) The change in potential in traversing a resistance in the direction of current is -iR while in the opposite direction +iR

(ii) The change in potential in traversing an emf source from negative to positive terminal is +E while in the opposite direction – *E* irrespective of the direction of current in the circuit.

(iii) The change in potential in traversing a capacitor from the negative terminal to the positive terminal is $+\frac{q}{C}$ while in

(iv) The change in voltage in traversing an inductor in the direction of current is $-L\frac{di}{dt}$ while in opposite direction it is $+L\frac{Adi}{dt}$, i, L, L, di, di

Different Measuring Instruments

(1) **Galvanometer**: It is an instrument used to detect small current passing through it by showing deflection. Galvanometers are of different types *e.g.* moving coil galvanometer, moving magnet galvanometer, hot wire galvanometer. In dc circuit usually moving coil galvanometer are used.

(i) **It's symbol :** G; where *G* is the total internal resistance of the galvanometer.

(ii) **Full scale deflection current :** The current required for full scale deflection in a galvanometer is called full scale deflection current and is represented by i_{q} .

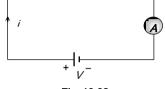
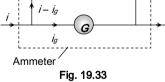
(iii) **Shunt**: The small resistance connected in parallel to galvanometer coil, in order to control current flowing through the galvanometer is known as shunt.

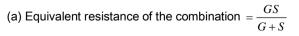
Table 19.4 :	Merits and	demerits	of shunt
--------------	------------	----------	----------

Merits of shunt	Demerits of shunt

To protect the galvanometer	Shunt resistance decreases
coil from burning	the sensitivity of galvanometer.
It can be used to convert any	
galvanometer into ammeter of	
desired range.	

(2) **Ammeter :** It is a device used to measure current and is always connected in series with the 'element' through which current is to be measured.

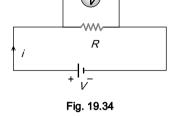




Fig. 19.32

(i) The reading of an ammeter is always lesser than actual current in the circuit.

(ii) Smaller the resistance of an ammeter more accurate will be its reading. An ammeter is said to be ideal if its resistance *r* is zero.

(iii) Conversion of galvanometer into ammeter : A galvanometer may be converted into an ammeter by connecting a low resistance (called shunt *S*) in parallel to the galvanometer *G* as shown in figure.



(b) *G* and *S* are parallel to each other hence both will have equal potential difference *i.e.* $i_e G = (i - i_e)S$; which gives

Required shunt
$$S = \frac{i_g}{(i - i_g)} G$$

(c) To pass *n*th part of main current (*i.e.* $i_g = \frac{i}{n}$) through the galvanometer, required shunt $S = \frac{G}{(n-1)}$.

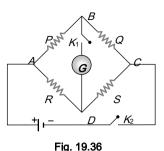
(3) Voltmeter : It is a device used to measure potential difference and is always put in parallel with the 'circuit element' across which potential difference be measured.

(i) The reading of a voltmeter is always lesser than true value.

(ii) Greater the resistance of voltmeter, more accurate will be its reading. A voltmeter is said to be ideal if its resistance is infinite, *i.e.*, it draws no current from the circuit element for its operation.

(iii) Conversion of galvanometer into voltmeter : A galvanometer may be converted into a voltmeter by connecting a large resistance R in gives with the galvanometer as shown in the figure.

(a) Equivalent resistance of the combination = $G \neq R$ (b) According to ohm's law $V = i_G (G + R)$; which gives Required series resistance $R = \frac{V}{i_g} - G = \left(\frac{V}{V_g} - 1\right)G$

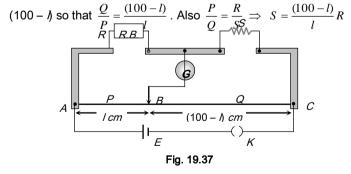

(c) If n^{th} part of applied voltage appeared across galvanometer (*i.e.* $V_g = \frac{V}{n}$) then required series resistance $\mathbf{R} = (n-1) G$.

UNIVERSAL

1048 Current Electricity

(4) Wheatstone bridge

: Wheatstone bridge is an arrangement of four resistance which can be used to measure one of them in terms of rest. Here arms *AB* and *BC* are called

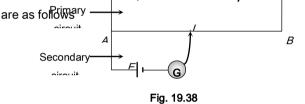

ratio arm and arms AC and BD are called conjugate arms

(i) **Balanced bridge**: The bridge is said to be balanced when deflection in galvanometer is zero *i.e.* no current flows through the galvanometer or in other words $V_B = V_D$. In the balanced condition $\frac{P}{Q} = \frac{R}{S}$, on mutually changing the position of cell and galvanometer this condition will not change.

(ii) **Unbalanced bridge**: If the bridge is not balanced current will flow from *D* to *B* if $V_D > V_B$ *i.e.* $(V_A - V_D) < (V_A - V_B)$ which gives PS > RQ.

(iii) **Applications of wheatstone bridge :** Meter bridge, post office box and Carey Foster bridge are instruments based on the principle of wheatstone bridge and are used to measure unknown resistance.

(5) **Meter bridge :** In case of meter bridge, the resistance wire AC is 100 *cm* long. Varying the position of tapping point *B*, bridge is balanced. If in balanced position of bridge AB = I, BC



Potentiometer

Potentiometer is a device mainly used to measure emf of a given cell and to compare emf's of cells. It is also used to measure internal resistance of a given cell.

(1) **Circuit diagram** : Potentiometer consists of a long resistive wire *AB* of length *L* (about 6m to 10 m long) made up of mangnine or constantan and a battery of known voltage *e* and internal resistance *r* called supplier battery or driver cell. Connection of these two forms primary circuit.

One terminal of another cell (whose emf E is to be measured) is connected at one end of the main circuit and the other terminal at any point on the resistive wire through a galvanometer G. This forms the secondary control of the details

R = Resistance of potentiometer wire,

Specific resistance of potentiometer wire.

 R_{h} = Variable resistance which controls the current through the wire *AB*

(i) The specific resistance (ρ) of potentiometer wire must be high but its temperature coefficient of resistance (α) must be low.

(ii) All higher potential points (terminals) of primary and secondary circuits must be connected together at point *A* and all lower potential points must be connected to point *B* or jockey.

(iii) The value of known potential difference must be greater than the value of unknown potential difference to be measured.

(iv) The potential gradient must remain constant. For this the current in the primary circuit must remain constant and the jockey must not be slided in contact with the wire.

(v) The diameter of potentiometer wire must be uniform everywhere.

(2) **Potential gradient** (*x*) : Potential difference (or fall in potential) per unit length of wire is called potential gradient *i.e.*

$$x = \frac{V}{L} \frac{volt}{m} \text{ where } V = iR = \left(\frac{e}{R+R_h+r}\right)R.$$

So $x = \frac{V}{L} = \frac{iR}{L} = \frac{i\rho}{A} = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$

(i) Potential gradient directly depends upon

(a) The resistance per unit length (R/L) of potentiometer wire.

(b) The radius of potentiometer wire (*i.e.* Area of cross-section)

(c) The specific resistance of the material of potentiometer wire (*i.e.* ρ)

(d) The current flowing through potentiometer wire ()

(ii) potential gradient indirectly depends upon

(a) The emf of battery in the primary circuit (*i.e. e*)

(b) The resistance of rheostat in the primary circuit (*i.e.*

Rh)

(3) **Working :** Suppose jocky is made to touch a point *J* on wire then potential difference between *A* and *J* will be V = xl

At this length () two potential difference are obtained

(i) V due to battery e and

(ii) E due to unknown cell

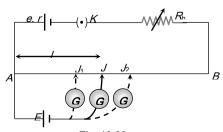
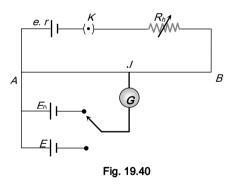


Fig. 19.39

If V > E then current will flow in galvanometer circuit in one direction

If $\swarrow E$ then current will flow in galvanometer circuit in opposite direction


If V = E then no current will flow in galvanometer circuit this condition to known as null deflection position, length / is known as balancing length.

In balanced condition E = xl

lf

or
$$E = xl = \frac{V}{L}l = \frac{iR}{L}l = \left(\frac{e}{R+R_h+r}\right) \cdot \frac{R}{L} \times l$$

V is constant then $L \propto l \Rightarrow \frac{x_1}{x_2} = \frac{L_1}{L_2} = \frac{l_1}{l_2}$

(6) Standardization of potentiometer : The process of determining potential gradient experimentally is known as standardization of potentiometer.

Let the balancing length for the standard emf E_0 is h then by the principle of potentiometer $E_0 = xh \Rightarrow x = \frac{E_0}{l}$

(7) Sensitivity of potentiometer : A potentiometer is said to be more sensitive, if it measures a small potential difference more accurately.

(i) The sensitivity of potentiometer is assessed by its potential gradient. The sensitivity is inversely proportional to the potential gradient.

(ii) In order to increase the sensitivity of potentiometer

(a) The resistance in primary circuit will have to be decreased.

(b) The length of potentiometer wire will have to be increased so that the length may be measured more accuracy.

Table 19.5 : Difference b	oetween voltme	eter and pote	entiometer
---------------------------	----------------	---------------	------------

Voltmeter	Potentiometer
It's resistance is high but finite	Its resistance is infinite
It draws some current from source of emf	It does not draw any current from the source of unknown emf
The potential difference measured by it is lesser than the actual potential difference	The potential difference measured by it is equal to actual potential difference
Its sensitivity is low	Its sensitivity is high
It is a versatile instrument	It measures only emf or potential difference
It is based on deflection method	It is based on zero deflection method

Application of Potentiometer

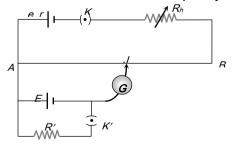
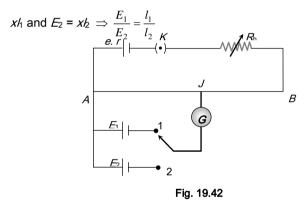


Fig. 19.41

(i) Initially in secondary circuit key K' remains open and balancing length (h) is obtained. Since cell E is in open circuit so it's emf balances on length h *i.e.* E = xh (i)

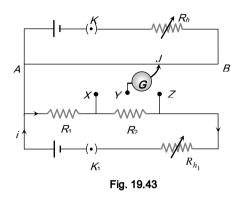
(ii) Now key K' is closed so cell E comes in closed circuit. If the process of balancing repeated again then potential difference V balances on length $\frac{1}{2}$ *i.e.* $V = x\frac{1}{2}$


.... (ii)

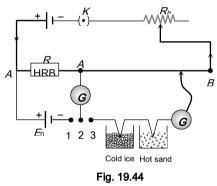
 \Rightarrow

(iii) By using formula internal resistance $r = \left(\frac{E}{V} - 1\right) \cdot R'$

$$r = \left(\frac{l_1 - l_2}{l_2}\right) \cdot R'$$


(2) Comparison of emf's of two cell : Let h and k be the balancing lengths with the cells E_1 and E_2 respectively then E_1 =

Let $E_1 > E_2$ and both are connected in series. If balancing length is h when cell assist each other and it is k when they oppose each other as shown then :


•
$$+ I \stackrel{E_1}{I_1} + I \stackrel{E_2}{I_2}$$

• $+ I \stackrel{E_1}{I_2} + I \stackrel{E_2}{I_2}$
($E_1 + E_2$) = xl_1
($E_1 - E_2$) = xl_2
 $\frac{E_1 + E_2}{E_1 - E_2} = \frac{l_1}{l_2}$ or $\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2}$

(3) Comparison of resistances : Let the balancing length for resistance R_1 (when XY is connected) is h and let balancing length for resistance $R_1 + R_2$ (when YZ is connected) is k.

Then
$$iR_1 = xl_1$$
 and $i(R_1 + R_2) = xl_2 \implies \frac{R_2}{R_1} = \frac{l_2 - l_1}{l_1}$

(4) To determine thermo emf

(i) The value of thermo-emf in a thermocouple for ordinary temperature difference is very low (10-6 volt). For this the potential gradient x must be also very low $(10^{-4} V/m)$. Hence a high resistance (R) is connected in series with the potentiometer wire in order to reduce current.

(ii) The potential difference across R must be equal to the emf of standard cell *i.e.* $iR = E_0$ \therefore $i = \frac{E_0}{R}$

(iii) The small thermo emf produced in the thermocouple e =

(iv)
$$x = i\rho = \frac{iR}{L}$$
 $\therefore e = \frac{iRl}{L}$ where L = length of

potentiometer wire, ρ = resistance per unit length, /= balancing length for e

(5) Calibration of ammeter : Checking the correctness of ammeter readings with the help of potentiometer is called calibration of ammeter.

(i) In the process of calibration of an ammeter the current flowing in a circuit is measured by an ammeter and the same current is also measured with the help of potentiometer. By comparing both the values, the errors in the ammeter readings are determined

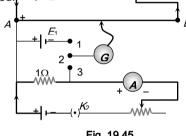


Fig. 19.45

(ii) For the calibration of an ammeter, 1 Ω standard resistance coil is specifically used in the secondary circuit of the potentiometer, because the potential difference across 1 Ω is equal to the current flowing through it *i.e.* V = i.

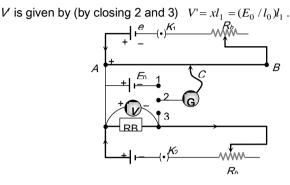
(iii) If the balancing length for the emf E_0 is *b* then $E_0 = xb$ $\Rightarrow x = \frac{E_0}{l_0}$ (Process of standardisation)

(iv) Let *i*' current flows through 1Ω resistance giving potential difference as $V' = i'(1) = xl_1$ where l_1 is the balancing length. So error can be found as $\Delta i = i - i = i - x l_1 = i - \frac{E_0}{l_0} \times l_1$

(6) Calibration of voltmeter

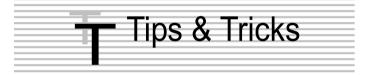
(i) Practical voltmeters are not ideal, because these do not have infinite resistance. The error of such practical voltmeter

хl


UNIVERSAL

1052 Current Electricity

can be found by comparing the voltmeter reading with calculated value of p.d. by potentiometer.


(ii) If *b* is balancing length for E_0 the emf of standard cell by connecting 1 and 2 of bi-directional key, then $x = E_0/b$.

(iii) The balancing length h for unknown potential difference

If the voltmeter reading is V then the error will be (V - V) which may be +ve, -ve or zero.

A dc flows uniformly throughout the cross-section of conductor while ac mainly flows through the outer surface area of the conductor. This is known as skin effect.

EX It is worth noting that electric field inside a charged conductor is zero, but it is non zero inside a current carrying conductor and is given by $E = \frac{V}{l}$ where V = potential difference across the conductor and l = length of the conductor. Electric field $E_{ln} = 0$

A2

conductor is zero.

For a given conductor JA = i = constant so that $J \propto \frac{1}{A}$ *i.e.*, $J_1A_1 = J_2A_2$; this is called equation of continuity

✓ The drift velocity of electrons is small because of the frequent collisions suffered by electrons.

The small value of drift velocity produces a large amount of electric current, due to the presence of extremely large number of free electrons in a conductor.

The propagation of current is almost at the speed of light and involves electromagnetic process. It is due to this reason that the electric bulb glows immediately when switch is on.

✓ In the absence of electric field, the paths of electrons between successive collisions are straight line while in presence of electric field the paths are generally curved.

E Free electron density in a metal is given by $n = \frac{N_A x d}{A}$ where N_A = Avogadro number, x = number of free electrons per atom, d = density of metal and A = Atomic weight of metal.

 \mathscr{L} In the absence of radiation loss, the time in which a fuse will melt does not depends on it's length but varies with radius as $t \propto r^4$.

And Mass (*m*) of a conducting wire is given then $\mathbf{R} \propto \frac{l^2}{m}$.

 \mathcal{A} Macroscopic form of Ohm's law is $R = \frac{V}{i}$, while it's

microscopic form is $J = \sigma E$.

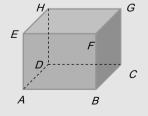
After stretching if length increases by *n* times then resistance will increase by n^2 times *i.e.* $R_2 = n^2 R_1$. Similarly if radius be reduced to $\frac{1}{n}$ times then area of cross-section decreases $\frac{1}{n^2}$ times so the resistance becomes n^4 times *i.e.* $R_2 = n^4 R_1$.

After stretching if length of a conductor increases by x%then resistance will increases by 2x% (valid only if x < 10%)

 Decoration of lightning in festivals is an example of series grouping whereas all household appliances connected in parallel grouping.

Solution n conductors of equal resistance, the number of possible combinations is 2^{n-1} .

 \swarrow If the resistance of *n* conductors are totally different, then the number of possible combinations will be 2^n .

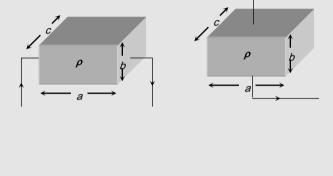

If n identical resistances are first connected in series and then in parallel, the ratio of the equivalent resistance is given

by
$$\frac{R_p}{R_s} = \frac{n^2}{1}$$
.

 \mathcal{L} If a wire of resistance *R*, cut in n equal parts and then these parts are collected to form a bundle then equivalent resistance of combination will be $\frac{R}{n^2}$.

 $\textbf{\textit{x}} \quad \text{If equivalent resistance of } R_1 \text{ and } R_2 \text{ in series and } \\ \text{parallel be } R_s \text{ and } R_p \text{ respectively then } \\ R_1 = \frac{1}{2} \left[R_s + \sqrt{R_s^2 - 4R_sR_p} \right] \text{ and } R_2 = \frac{1}{2} \left[R_s - \sqrt{R_s^2 - 4R_sR_p} \right].$

If a skeleton cube is made with 12 equal resistance each having resistance R then the net resistance across



The longest diagonal (*E*C or *AG*) = $\frac{5}{6}R$

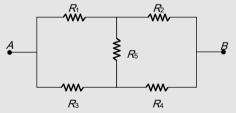
The diagonal of face (*e.g. AC, ED,*) = $\frac{3}{4}R$

A side (*e.g.* AB, BC....) $=\frac{7}{12}R$

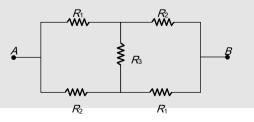
Resistance of a conducting body is not unique but depends on it's length and area of cross-section *i.e.* how the potential difference is applied. See the following figures

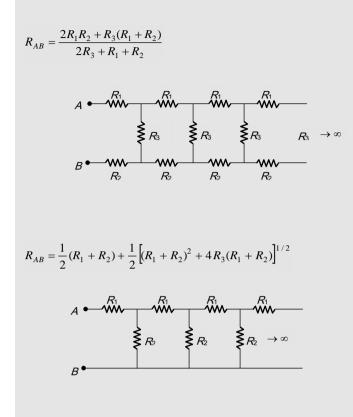
Length = a

Length = b


Area of cross-section = $a \times c$

Resistance $R = \rho \left(\frac{a}{h \times c} \right)$


Area of cross-section = $b \times c$


Resistance $R = \rho \left(\frac{b}{a \times c} \right)$

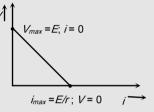
Some standard results for equivalent resistance

$$R_{AB} = \frac{R_1 R_2 (R_3 + R_4) + (R_1 + R_2) R_3 R_4 + R_5 (R_1 + R_2) (R_3 + R_4)}{R_5 (R_1 + R_2 + R_3 + R_4) + (R_1 + R_3) (R_2 + R_4)}$$

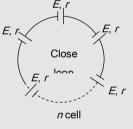
 $R_{AB} = \frac{1}{2} R_{1} \left[1 + \sqrt{1 + 4 \left(\frac{R_{2}}{R_{1}} \right)} \right]$

It is a common misconception that "current in the circuit will be maximum when power consumed by the load is maximum."

Actually current i = E/(R+r) is maximum (= E/r) when $R = \min = 0$ with $P_L = (E/r)^2 \times 0 = 0 \min$. while power consumed by the load $E^2 R/(R+r)^2$ is maximum (= $E^2/4r$) when R = r and $i = (E/2r) \neq \max(= E/r)$.

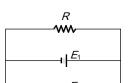

Emf is independent of the resistance of the circuit and depends upon the nature of electrolyte of the cell while potential difference depends upon the resistance between the two points of the circuit and current flowing through the circuit.

Whenever a cell or battery is present in a branch there
must be some resistance (internal or external or both)


present in that branch. In practical situation it always happen because we can never have an ideal cell or battery with zero resistance.


 \mathcal{L} In series grouping of identical cells. If one cell is wrongly connected then it will cancel out the effect of two cells *e.g.* If in the combination of *n* identical cells (each having emf *E* and internal resistance *n*) if *x* cell are wrongly connected then equivalent emf $E_{eq} = (n - 2x)E$ and equivalent internal resistance $r_{eq} = nr$.

S Graphical view of open circuit and closed circuit of a cell.


If *n* identical cells are connected in a loop in order, then emf between any two points is zero.

$$E_{eq} = E$$
 $E_{eq} = 0$

When two cell's of different emf and no internal resistance are connected in parallel then equivalent emf is

indeterminate, note that connecting a wire with a cell with no resistance is equivalent to short circuiting. Therefore the total current that will be flowing will be infinity.

 \measuredangle Wheatstone bridge is most sensitive if all the arms of bridge have equal resistances *i.e.* P = Q = R = S

If the temperature of the conductor placed in the right gap of metre bridge is increased, then the balancing length decreases and the jockey moves towards left.

In Wheatstone bridge to avoid inductive effects the battery key should be pressed first and the galvanometer key afterwards.

The measurement of resistance by Wheatstone bridge is not affected by the internal resistance of the cell.

In case of zero deflection in the galvanometer current flows in the primary circuit of the potentiometer, not in the galvanometer circuit.

A potentiometer can act as an ideal voltmeter.

Electric Conduction, Ohm's Law and Resistance

- Current of 4.8 amperes is flowing through a conductor. The number of electrons per second will be [CPMT 1986]
 - (a) 3×10^{19} (b) 7.68×10^{21}
 - (c) 7.68×10^{20} (d) 3×10^{20}
- 2. When the current *i* is flowing through a conductor, the drift velocity is v. If 2i current is flowed through the same metal but having double the area of cross-section, then the drift velocity will be
 - (a) v/4 (b) v/2(c) v (d) 4v
- When current flows through a conductor, then the order of drift velocity of electrons will be [CPMT 1986]
 - (a) $10^{10} m / \sec$ (b) $10^{-2} cm / \sec$
 - (c) $10^4 \ cm \ sec$ (d) $10^{-1} \ cm \ sec$
- 4. Every atom makes one free electron in copper. If 1.1 ampere current is flowing in the wire of copper having 1 mm diameter, then the drift velocity (approx.) will be (Density of copper $= 9 \times 10^3 kg m^{-3}$ and atomic weight = 63)

[CPMT 1989]

- (a) $0.3 \, mm \, / \, sec$ (b) $0.1 \, mm \, / \, sec$
- (c) $0.2 mm / \sec$ (d) $0.2 cm / \sec$
- 5. Which one is not the correct statement [NCERT 1978]
 - (a) $1 volt \times 1 coulomb = 1 joule$
 - (b) 1 volt×1 ampere = 1 joule/ second
 - (c) $1 volt \times 1 watt = 1 H.P.$
 - (d) Watt-hour can be expressed in eV
- 6. If a 0.1 % increase in length due to stretching, the percentage increase in its resistance will be

[MNR 1990; MP PMT 1996; UPSEAT 1999; MP PMT 2000]

- (a) 0.2 % (b) 2 %
- (c) 1 % (d) 0.1 %

7. The specific resistance of manganin is $50 \times 10^{-8} ohm \times m$.

The resistance of a cube of length 50 cm will be

- (a) $10^{-6} ohm$ (b) $2.5 \times 10^{-5} ohm$
- (c) $10^{-8} ohm$ (d) $5 \times 10^{-4} ohm$

- The resistivity of iron is 1×10^{-7} ohm m. The resistance of a iron The specific resistance of a wire is ρ , its volume is $3m^3$ and its 18 8. resistance is 3 ohms, then its length will be wire of particular length and thickness is 1 ohm. If the length and the diameter of wire both are doubled, then the resistivity in [CPMT 1984] ohm - m will be [CPMT 1983; DPMT 1999] (a) $\sqrt{\frac{1}{\rho}}$ (b) $\frac{3}{\sqrt{\rho}}$ (a) 1×10^{-7} (b) 2×10^{-7} (c) 4×10^{-7} (d) 8×10^{-7} (d) $\rho \sqrt{\frac{1}{3}}$ The temperature coefficient of resistance for a wire is (c) $\frac{1}{\rho}\sqrt{3}$ 9. $0.00125 / {}^{\circ}C$. At 300K its resistance is 1 *ohm*. The temperature at which the resistance becomes 2 ohm is 62.5×10^{18} electrons per second are flowing through a wire of 19. [IIT 1980: MP PET 2002; KCET 2003; area of cross-section $0.1 m^2$, the value of current flowing will be MP PMT 2001; Orissa JEE 2002] (a) 1 A (b) 0.1 A (b) 1100 K (a) 1154 K (c) 10 A (d) 0.11 A (d) 1127 K (c) 1400 K A piece of wire of resistance 4 ohms is bent through 180° at its 20. 10. When the length and area of cross-section both are doubled, then its mid point and the two halves are twisted together, then the resistance [MP PET 1989] resistance is [CPMT 1971] (a) Will become half (b) Will be doubled (a) 8 ohms (b) 1 *ohm* (d) Will become four times (c) Will remain the same (c) 2 ohms (d) 5 ohms The resistance of a wire is 20 ohms. It is so stretched that the length 11. When a piece of aluminium wire of finite length is drawn through a 21. becomes three times, then the new resistance of the wire will be series of dies to reduce its diameter to half its original value, its (a) 6.67 ohms (b) 60.0 ohms resistance will become (c) 120 ohms (d) 180.0 ohms [NCERT 1974; AIIMS 1997; MH CET 2000; UPSEAT 2001; CBSE PMT 2002] The resistivity of a wire [MP PMT 1984; DPMT 1982] 12. (a) Two times (b) Four times (a) Increases with the length of the wire (c) Eight times (d) Sixteen times (b) Decreases with the area of cross-section A wire 100 cm long and 2.0 mm diameter has a resistance of 0.7 22. Decreases with the length and increases with the cross-section (c) ohm, the electrical resistivity of the material is of wire (a) $4.4 \times 10^{-6} ohm \times m$ (b) $2.2 \times 10^{-6} ohm \times m$ (d) None of the above statement is correct (c) $1.1 \times 10^{-6} ohm \times m$ (d) $0.22 \times 10^{-6} ohm \times m$ Ohm's law is true 13. A certain wire has a resistance R. The resistance of another wire 23. (a) For metallic conductors at low temperature identical with the first except having twice its diameter is (b) For metallic conductors at high temperature 2R(b) 0.25 R (a) (c) For electrolytes when current passes through them (c) 4 R(d) 0.5 R (d) For diode when current flows The example for non-ohmic resistance is In hydrogen atom, the electron makes 6.6×10^{15} revolutions per [MP PMT 1978] 14. 24. (a) Copper wire (b) Carbon resistance second around the nucleus in an orbit of radius $0.5 \times 10^{-10} m$. It (c) Diode is equivalent to a current nearly (d) Tungston wire (b) 1 *mA* (a) 1 A 15. Drift velocity v_d varies with the intensity of electric field as per the (d) $1.6 \times 10^{-19} A$ [CPMT 1981; BVP 2003] (c) $1 \mu A$ relation A wire of length 5m and radius 1mm has a resistance of 1 ohm. 25. (b) $v_d \propto \frac{1}{F}$ (a) $v_d \propto E$ What length of the wire of the same material at the same temperature and of radius 2 mm will also have a resistance of 1 (d) $v_d \propto E^2$ ohm (c) $v_d = \text{constant}$ (a) 1.25 m (b) 2.5 m On increasing the temperature of a conductor, its resistance 16. increases because [CPMT 1982] (c) 10 m (d) 20*m* When there is an electric current through a conducting wire along (a) Relaxation time decreases 26. its length, then an electric field must exist Mass of the electrons increases (b) (a) Outside the wire but normal to it (c) Electron density decreases (b) Outside the wire but parallel to it (d) None of the above Inside the wire but parallel to it (c) Inside the wire but normal to it (d) In a conductor 4 coulombs of charge flows for 2 seconds. The value 17. Through a semiconductor, an electric current is due to drift of 27. of electric current will be [CPMT 1984] (a) Free electrons (a) 4 volts (b) 4 amperes Free electrons and holes (b)
 - (c) 2 *amperes* (d) 2 *volts*

(c) Positive and negative ions

(d) Protons

-			
28.	In an electrolyte 3.2×10^{18} bivalent positive ions drift to the right		(a) 1.0 mm / sec
	per second while 3.6×10^{18} monovalent negative ions drift to the		(c) 0.1 <i>mm / sec</i>
	left per second. Then the current is	39.	It is easier to start
	(a) 1.6 amp to the left (b) 1.6 amp to the right		This is because the
	(c) 0.45 amp to the right (d) 0.45 amp to the left		(a) Decreases with
29.	A metallic block has no potential difference applied across it, then		(b) Increases with
	the mean velocity of free electrons is T = absolute temperature of		(c) Decreases wit
	the block)		(d) Does not char
	(a) Proportional to T	40.	5 <i>amperes</i> of curr
	(b) Proportional to \sqrt{T}		charge flowing in o
	(c) Zero		(a) F
	(d) Finite but independent of temperature		(a) 5 (c) 1/12
30.	The specific resistance of all metals is most affected by	41.	Two wires of the s
	(a) Temperature (b) Pressure	41.	long as the second
	(c) Degree of illumination (d) Applied magnetic field		resistance of the fir
31.	The positive temperature coefficient of resistance is for		
	(a) Carbon (b) Germanium		(a) Twice of the s
	(c) Copper (d) An electrolyte		(c) Equal to the s
32.	The fact that the conductance of some metals rises to infinity at some temperature below a few Kelvin is called	42.	An electric wire is is measured by an a
	(a) Thermal conductivity (b) Optical conductivity		(a) $E = I^2 R$
	(c) Magnetic conductivity (d) Superconductivity		(c) $E = R / I$
33.	Dimensions of a block are $1 \operatorname{cm} \times 1 \operatorname{cm} \times 100 \operatorname{cm}$. If specific		(-)
	resistance of its material is $3 \times 10^{-7} ohm - m$, then the resistance	43.	The resistances of related by
	between the opposite rectangular faces is		(a) $R_t = R_0 (1 + 1)^{-1}$
	[MP PET 1993]		
	(a) $3 \times 10^{-9} ohm$ (b) $3 \times 10^{-7} ohm$		(c) $R_t = R_0^2 (1 + $
	(c) $3 \times 10^{-5} ohm$ (d) $3 \times 10^{-3} ohm$	44.	An electric wire o
34.	In the above question, the resistance between the square faces is		resistance <i>R ohm</i> s. length and area of
	(a) $3 \times 10^{-9} ohm$ (b) $3 \times 10^{-7} ohm$		(a) $4R$
	(a) 3×10^{-0} $00000000000000000000000000000000000$		(4) 4/1

 3×10^{-5} ohm (d) $3 \times 10^{-3} ohm$ (c)

1052 Current Electricity

There is a current of 20 amperes in a copper wire of 10^{-6} square 35. metre area of cross-section. If the number of free electrons per cubic metre is 10^{29} , then the drift velocity is

С
С

- (c) $1.25 \times 10^{-3} m / sec$ (d) $1.25 \times 10^{-4} m / sec$
- The electric intensity E, current density j and specific resistance 36. k are related to each other by the relation

[DPMT 2001]

48.

(a) $E = j/k$ (b)	E = jk
-------------------	--------

(c)
$$E = k / j$$
 (d) $k = jE$

The resistance of a wire of uniform diameter d and length L is 37. R. The resistance of another wire of the same material but diameter 2d and length 4L will be

> [CPMT 1984; MP PET 2002] 2R(b) *R* (a)

(c)
$$R/2$$
 (d) $R/4$

There is a current of 1.344 amp in a copper wire whose area of 38. cross-section normal to the length of the wire is $1\,mm^2$. If the number of free electrons per cm^3 is 8.4×10^{22} , then the drift velocity would be [CPMT 1990] r to start a car engine on a hot day than on a cold day. cause the internal resistance of the car battery eases with rise in temperature eases with rise in temperature eases with a fall in temperature not change with a change in temperature s of current is passed through a metallic conductor. The wing in one minute in coulombs will be [MP PET 1984] (b) 12 (d) 300 s of the same material are given. The first wire is twice as he second and has twice the diameter of the second. The of the first will be [MP PMT 1993] e of the second (b) Half of the second l to the second (d) Four times of the second c wire is connected across a cell of e.m.f. E. The current Ied by an ammeter of resistance *R*. According to *ohm*'s law $I^2 R$ (b) E = IR

(b) 1.0 m / sec

(d) 0.01 mm / sec

- R/I(d) E = I/R
- tances of a wire at temperatures $t^{\circ}C$ and $0^{\circ}C$ are [MP PMT 1993]

(a)
$$R_t = R_0(1 + \alpha t)$$
 (b) $R_t = R_0(1 - \alpha t)$

(c)
$$R_t = R_0^2 (1 + \alpha t)$$
 (d) $R_t = R_0^2 (1 - \alpha t)$

ic wire of length '1 and area of cross-section a has a R ohms. Another wire of the same material having same **P PET 1993**] area of cross-section 4*a* has a resistance of

- (b) *R*/4 (a) 4*R*
- (c) *R*/16 (d) 16*R* For which of the following the resistance decreases on increasing the 45. [MP PET 1993] temperature
 - (b) Tungsten (a) Copper
 - (c) Germanium (d) Aluminium
- If n, e, τ and *m* respectively represent the density, charge relaxation 46. time and mass of the electron, then the resistance of a wire of length l and area of cross-section A will be

[CPMT 1992]

(a)
$$\frac{ml}{ne^2\tau A}$$
 (b) $\frac{m\tau^2 A}{ne^2l}$

(c)
$$\frac{ne^2 \tau A}{2ml}$$
 (d) $\frac{ne^2 A}{2m \tau l}$

The relaxation time in conductors 47.

- (a) Increases with the increase of temperature
- (b) Decreases with the increase of temperature
- (c) It does not depend on temperature
- (d) All of sudden changes at 400 K
- Which of the following statement is correct
- (a) Liquids obey fully the *ohm*'s law
- (b) Liquids obey partially the ohm's law
- (c) There is no relation between current and p.d. for liquids

[DPMT 2003]

			Current Electricity 1053
	(d) None of the above		(c) Voltage (d) None of the above
49.	A certain piece of silver of given mass is to be made like a wire. Which of the following combination of length (L) and the area of cross-sectional (A) will lead to the smallest resistance [MP PMT 1995; CBS	58. 58 PMT 1	A solenoid is at potential difference 60 <i>V</i> and current flows through it is 15 <i>ampere</i> , then the resistance of coil will be [AFMC 1995]
	(a) L and A		(a) 4Ω (b) 8Ω
	(b) 2 <i>L</i> and <i>A</i> /2		(c) 0.25Ω (d) 2Ω
	(c) <i>L</i> /2 and 2 <i>A</i>	50	All of the following statements are true except
	(d) Any of the above, because volume of silver remains same	59.	[Manipal MEE 1995]
50.	The resistance of a wire is 10Ω . Its length is increased by 10% by stretching. The new resistance will now be		(a) Conductance is the reciprocal of resistance and is measured in <i>Siemens</i>
	[СРМТ 2000; РЬ РЕТ 2004]		(b) <i>Ohm</i> 's law is not applicable at very low and very high
	(a) 12Ω (b) 1.2Ω		temperatures (c) <i>Ohm</i> 's law is applicable to semiconductors
	(c) 13Ω (d) 11Ω		 (c) Ohmis law is applicable to semiconductors (d) Ohmis law is not applicable to electron tubes, discharge tubes and electrolytes
51.	Resistance of tungsten wire at $150^\circ C$ is 133Ω . Its resistance	60.	A potential difference of V is applied at the ends of a copper wire of
	temperature coefficient is $0.0045/^\circ C$. The resistance of this wire		length / and diameter d. On doubling only d, drift velocity
	at $500^{\circ}C$ will be [DPMT 2004]		(a) Becomes two times (b) Becomes half
	(a) 180Ω (b) 225Ω		(c) Does not change (d) Becomes one fourth
	(c) 258Ω (d) 317Ω	61.	If the resistance of a conductor is 5 Ω at 50 C and 7 Ω at 100 C then the mean temperature coefficient of resistance of the material is
52.	A metal wire of specific resistance $64 \times 10^{-6} ohm - cm$ and length 198 <i>cm</i> has a resistance of 7 <i>ohm</i> , the radius of the wire will		(a) 0.008/ <i>C</i> (b) 0.006/ <i>C</i>
	be [MP PET 1994]		(c) $0.004/C$ (d) $0.001/C$
	(a) 2.4 <i>cm</i> (b) 0.24 <i>cm</i>	62.	The resistance of a discharge tube is
	(c) 0.024 <i>cm</i> (d) 24 <i>cm</i>		[AFMC 1996; CBSE PMT 1999]
53.	A copper wire of length 1 m and radius 1 mm is joined in series with an iron wire of length 2 m and radius 3 mm and a current is passed through the wires. The ratio of the current density in the copper and iron wires is		(a) <i>Ohm</i> ic (b) Non- <i>ohm</i> ic
			(c) Both (a) and (b) (d) Zero
			We are able to obtain fairly large currents in a conductor because
	[MP PMT 1994] (a) 18 : 1 (b) 9 : 1		(a) The electron drift speed is usually very large
	(c) 6:1 (d) 2:3		(b) The number density of free electrons is very high and this can
54.	For a metallic wire, the ratio V/i ($V =$ the applied potential difference, <i>i</i> = current flowing) is [MP PMT 1994; BVP 2003]		compensate for the low values of the electron drift speed and the very small magnitude of the electron charge
	(a) Independent of temperature		$(c) \ \ \mbox{The number density of free electrons as well as the electron}$
	(b) Increases as the temperature rises		drift speeds are very large and these compensate for the very
	(c) Decreases as the temperature rises		small magnitude of the electron charge
	(d) Increases or decreases as temperature rises, depending upon the metal		(d) The very small magnitude of the electron charge has to be divided by the still smaller product of the number density and drift speed to get the electric current
55.	The resistance of a wire is <i>R</i> . If the length of the wire is doubled by stretching, then the new resistance will be	64.	A platinum resistance thermometer has a resistance of 50Ω at
	[Roorkee 1992; AFMC 1995; KCET 1993; AMU (Med.) 1999;		$20^\circ C$. When dipped in a liquid the resistance becomes 76.8Ω .
	CBSE PMT 1999; MP PET 2001; UPSEAT 2001]		The temperature coefficient of resistance for platinum is
	(a) 2 <i>R</i> (b) 4 <i>R</i>		$lpha=3.92{ imes}10^{-3}/^{\circ}C$. The temperature of the liquid is
	(c) R (d) $\frac{R}{4}$		(a) $100^{\circ}C$ (b) $137^{\circ}C$
56.	→ Which of the following has a negative temperature coefficient		(c) $167^{\circ}C$ (d) $200^{\circ}C$ [AFMC 1995]
	(a) C (b) Fe	65.	In a wire of circular cross-section with radius r, free electrons trave
	(c) <i>Mn</i> (d) <i>Ag</i>		with a drift velocity V when a current I flows through the wire. What is the current in another wire of half the radius and of the
57.	The reciprocal of resistance is [AFMC 1995]		same material when the drift velocity is $2V$
	(a) Conductance (b) Resistivity		[MP PET 1997]

_			
	(a) 21 (b) 1	74.	σ_1 and σ_2 are the electrical conductivities of <i>Ge</i> and /
	(c) $I/2$ (d) $I/4$		respectively. If these substances are heated, then (a) Both σ and σ increase
56.	The resistivity of a wire depends on its [MP PMT/PET 1998]		(a) Both σ_1 and σ_2 increase
	(a) Length (b) Area of cross-section		(b) σ_1 increases and σ_2 decreases
	(c) Shape (d) Material		(c) σ_1 decreases and σ_2 increases
57.	The conductivity of a superconductor is		(d) Both σ_1 and σ_2 decrease
	(a) Infinite (b) Very large	75.	1.6 <i>mA</i> current is flowing in conducting wire then the number electrons flowing per <i>second</i> is [RPMT 1999]
	(c) Very small (d) Zero		(a) 10 ⁻ (b) 10 ⁻
-			(c) 10° (d) 10°
8.	In a neon discharge tube $2.9 \times 10^{18} Ne^+$ ions move to the right	76.	A current I is passing through a wire having two sections P and
	each <i>second</i> while 1.2×10^{18} electrons move to the left per <i>second</i>	•	of uniform diameters d and $d/2$ respectively. If the mean dr
	Electron charge is $1.6\! imes\!10^{-19}C$. The current in the discharge tube		velocity where the presence of
	(a) 1 A towards right (b) 0.66 A towards right		
	(c) 0.66 A towards left (d) Zero		(a) $v_{,=} v_{,=}$ (b) $v_{,=} \frac{1}{2} v_{,=}$
9.	A steady current flows in a metallic conductor of non-uniform cross- section. The quantity/ quantities constant along the length of the conductor is/are		(c) $v_{i} = \frac{1}{4} v_{i}$ (d) $v_{i} = 2 v_{i}$
	[KCET 1994, 11T 1997 Cancelled; CBSE PMT 2001]	77.	If an electric current is passed through a nerve of a man, then man
	(a) Current, electric field and drift speed		(a) Begins to laugh
	(b) Drift speed only		(b) Begins to weep
	(c) Current and drift speed		(c) Is excited
	(d) Current only	-0	(d) Becomes insensitive to pain
'0.	The resistivity of alloys $= R_{alloy}$; the resistivity of constituent metals R_{metal} . Then, usually [KCET 1994]		The resistance of a coil is 4.2 Ω at 100 ⁻ <i>C</i> and the temperatu coefficient of resistance of its material is 0.004/ ⁻ <i>C</i> . Its resistance 0 <i>C</i> is [KCET 199]
			(a) 6.5Ω (b) 5Ω
	(a) $R_{\text{alloy}} = R_{\text{metal}}$		(c) 3Ω (d) 4Ω
	(b) $R_{\text{alloy}} < R_{\text{metal}}$	79.	Masses of three wires of copper are in the ratio of $1:3:5$ and the
	(c) There is no simple relation between R_{alloy} and R_{metal}		lengths are in the ratio of $5:3:1$. The ratio of their electric resistances are [AFMC 200
	(d) $R_{\text{alloy}} > R_{\text{metal}}$		(a) 1:3:5 (b) 5:3:1
1.	Two wires A and B of same material and same mass have radius	-	(c) 1:15:125 (d) 125:15:1
	2 <i>r</i> and <i>r</i> . If resistance of wire <i>A</i> is 34Ω , then resistance of <i>B</i> will be	80.	Conductivity in the order of [AFMC 2000]
	(a) 544 Ω (b) 272 Ω		(a) <i>Al, Ag, Cu</i> (b) <i>Al, Cu, Ag</i> (c) <i>Cu, Al, Ag</i> (d) <i>Ag, Cu, Al</i>
	(c) 68Ω (d) 17Ω	81.	A uniform wire of resistance R is uniformly compressed along i
2.	Two rods of same material and length have their electric resistance		length, until its radius becomes n times the original radius. No
	in ratio 1:2. When both rods are dipped in water, the correct statement will be [RPMT 1997]		resistance of the wire becomes [KCET 200
	(a) A has more loss of weight		(a) $\frac{R}{n^4}$ (b) $\frac{R}{n^2}$
	(b) <i>B</i> has more loss of weight		n n²
	(c) Both have same loss of weight		(c) $\frac{R}{d}$ (d) nR
	(d) Loss of weight will be in the ratio $1:2$	82.	<i>n</i> The resistance of a conductor is 5 <i>ohm</i> at 50 <i>C</i> and 6 <i>ohm</i> at 100 [.]
3.	$20\mu\!A$ current flows for 30 <i>seconds</i> in a wire, transfer of charge		Its resistance at 0° <i>C</i> is [KCET 200
	will be [RPMT 1997]		(a) 1 <i>ohm</i> (b) 2 <i>ohm</i>
			(c) $3 ahm$ (d) $4 ahm$

(c) 3 *ohm*

83.

- (a) $2 \times 10^{-4} C$ (b) $4 \times 10^{-4} C$
- (c) $6 \times 10^{-4} C$ (d) $8 \times 10^{-4} C$

If an electron revolves in the path of a circle of radius of 0.5×10^{-10} m at frequency of $5 \times 10^{\circ}$ cycles/s the electric current in the circle is (Charge of an electron = $1.6 \times 10^{\circ}$ C) [EAMCET 2000]

(d) 4 *ohm*

			Seturiente Electricity 1033
(a) 0.4 <i>mA</i>	(b) 0.8 <i>mA</i>	93.	Calculate the amount of charge flowing in 2 minutes in a wire of
(c) 1.2 <i>mA</i>	(d) 1.6 <i>mA</i>		resistance 10 Ω when a potential difference of 20 V is applied between its ends [Kerala (Engg.) 2001]
	n an iron and copper wire of same		(a) 120 C (b) 240 C
0	ne current flow in the two wires, the ir radii must be (Given that specific		(a) 120 C (b) 240 C (c) 20 C (d) 4 C
	⁷ <i>ohm–m</i> and specific resistance of	94.	If a wire of resistance <i>R</i> is melted and recasted to half of its length,
copper = 1.7×10^{-8} ohm-m)		54.	then the new resistance of the wire will be
	[MP PMT 2000]		[KCET (Med.) 2001]
(a) About 1.2	(b) About 2.4		(a) <i>R</i> /4 (b) <i>R</i> /2
(c) About 3.6	(d) About 4.8		(c) <i>R</i> (d) 2 <i>R</i>
	<i>coulomb</i>) is moving in a circle of	95.	The drift velocity does not depend upon [BHU 2001]
radius 5.1 \times 10 m at a frequence	cy of $6.8 \times 10^{\circ}$ revolutions/sec. The		(a) Cross-section of the wire (b) Length of the wire
equivalent current is approximation			(c) Number of free electrons (d) Magnitude of the current
	[MP PET 2000]	96.	There is a current of 40 <i>ampere</i> in a wire of $10^{-6} m^2$ area of
	(b) 6.8×10^{-3} amp		cross-section. If the number of free electron per m^3 is 10^{29} ,
(c) 1.1×10^{-3} amp	(d) 2.2×10^{-3} amp		then the drift velocity will be [Pb. PMT 2001]
	<i>m</i> long and 0.6 <i>cm</i> in diameter. Its		(a) 1.25×10^3 m/s (b) 2.50×10^{-3} m/s
-	7. Another disc made of the same		(c) 25.0×10^{-3} m/s (d) 250×10^{-3} m/s
resistance between the round fa	and 1.0 <i>mm</i> thick. What is the ces of the disc	9 7.	At room temperature, copper has free electron density of
	(b) 2.70×10^{-7} ohm		8.4×10^{20} per m^3 . The copper conductor has a cross-section of
			10 [•] <i>m</i> and carries a current of 5.4 <i>A</i> . The electron drift velocity in copper is [UPSEAT 2002]
(c) 4.05×10^{-6} ohm	(d) 8.10×10^{-5} ohm		(a) 400 <i>m/s</i> (b) 0.4 <i>m/s</i>
	resistance of a copper wire become		(c) 0.4 <i>mm/s</i> (d) 72 <i>m/s</i>
for copper = $4 \times 10^{\circ} per \cdot C$	Femperature coefficient of resistance	98.	The resistance of a 5 cm long wire is 10 Ω . It is uniformly stretched
	[MP PET 2000]		so that its length becomes 20 cm. The resistance of the wire is
(a) 400 <i>C</i>	(b) 450 <i>C</i>		(a) 160 Ω (b) 80 Ω
(c) 500 <i>C</i>	(d) 550 <i>C</i>		(c) 40 Ω (d) 20 Ω
An electron revolves 6 × 10 [,] <i>tin</i>	<i>nes/sec</i> in circular loop. The current	99.	The resistance of an incandescent lamp is [KCET 2002]
in the loop is	[MNR 1995; UPSEAT 2000]		(a) Greater when switched off
(a) 0.96 <i>mA</i>	(b) 0.96 <i>µ A</i>		(b) Smaller when switched on
(c) 28.8 A	(d) None of these		(c) Greater when switched on
	\times 10 <i>C</i> . How many electrons strike tube each <i>second</i> when the beam		(d) The same whether it is switched off or switched on
current is 16 <i>mA</i>	[AMU (Med.) 2000]	100	
(a) 10°	(b) 10°	100.	In the figure a carbon resistor has bands of different colours on its body as mentioned in the figure. The value of the resistance is
(c) 10	(d) 10		Silver
If potential $V = 100 \pm 0.5 Vc$	olt and current $I = 10 \pm 0.2$ amp		(a) 2.2 kΩ
are given to us. Then what will	be the value of resistance		(b) $3.3 \times \Omega^{1}$ (b) $3.3 \times \Omega^{1}$
(a) $10 \pm 0.7 ohm$	(b) $5 \pm 2 ohm$		
(c) $0.1 \pm 0.2 ohm$	(d) None of these		(c) 5.6 $k\Omega$ \downarrow \downarrow $\overset{\text{Red}}{\overset{Red}}{\overset{Red}}{\overset{Red}}{\overset{Red}{\overset{Red}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}}{$
	and one square <i>millimetre</i> cross-		(d) 9.1 $k\Omega$ White Brown
-	A when connected to a $2V$ battery.	101.	By increasing the temperature, the specific resistance of a conductor
The resistivity of nichrome wire	in <i>ohm metre</i> is		and a semiconductor [AIEEE 2002] (a) Increases for both
	[EAMCET 2001]		(b) Decreases for both
(a) 1×10^{-6}	(b) 4×10^{-7}		(c) Increases, decreases
(c) 3×10^{-7}	(d) 2×10^{-7}		(d) Decreases, increases
If an observer is moving with r	respect to a stationary electron, then	102.	Which of the following is vector quantity [AFMC 2002]
he observes	[DCE 2001]		(a) Current density (b) Current
(a) Only magnetic field	(b) Only electric field		(c) Wattless current (d) Power

- (a) Only magnetic field (b) Only electric field
- (c) Both (a) and (b) (d) None of the above

(a)	160 Ω		(b)	80 Ω	

- 2
- switched on
- f different colours on its of the resistance is
 - Red
- resistance of a conductor EE 2002]
- - (d) Power

(c)	500 C	(d)	550 C	

84.

85.

86.

87.

92.

88. An electron revolve in the loop is (a) 0.96 mA

(c) 28.8 A	(d)	None of these
------------	-----	---------------

- 89. The charge of an el the screen of a c current is 16 mA (a) 10⁻
 - (c) 10^{-,}
- If potential V = 190. are given to us. The

(a)	$10\pm0.7ohm$	(b)	$5\pm 2ohm$	

- 91. A nichrome wire section carries a ci

 - (c) 3×10^{-7}

- (c) $0.1 \pm 0.2 ohn$
- The resistivity of nic

 - (a) 1×10^{-6}

UNIV SELF S	1056 Current El	ectricity
103.	-	metal are in the ratio 1 : 2 : 3 and their 2 : 1. The electrical resistances are in [CPMT 2002]
	(a) 1:4:9	(b) 9:4:1
	(c) 1:2:3	(d) 27:6:1
104.	A current of 1 <i>mA</i> is flowi electrons will pass a given p	ng through a copper wire. How many oint in one <i>second</i>
	$[e = 1.6 \times 10^{-1} Coulomb]$	[RPMT 2000; MP PMT 2002]
	(a) 6.25×10^{19}	(b) 6.25×10^{15}
	(c) 6.25×10^{31}	(d) 6.25×10^8
105.		electrons in a conductor is ' <i>v</i> ' when a . If both the radius and current are will be[BHU 2002]
	(a) <i>v</i>	(b) $\frac{v}{2}$
	(c) $\frac{v}{4}$	(d) $\frac{v}{8}$

106. A wire of radius r has resistance R. If it is stretched to a radius of 3r . • . L

4	, its resistance becomes	IBHI	I 2002]
(a)	$\frac{9R}{16}$	(b)	$\frac{16R}{9}$
(c)	$\frac{81R}{256}$	(d)	$\frac{256R}{81}$

The resistance of a conductor increases with 107.

- (a) Increase in length
- (b) Increase in temperature
- (c) Decrease in cross-sectional area
- (d) All of these
- 108. A copper wire has a square cross-section, 2.0 mm on a side. It carries a current of 8 A and the density of free electrons is $8 \times 10^{28} m^{-3}$. The drift speed of electrons is equal to

[AMU (Med.) 2002]

[CBSE PMT 2002]

(a)
$$0.156 \times 10^{-3}$$
 m.s (b) 0.156×10^{-2} m.s

- (c) 3.12×10^{-3} m.s (d) 3.12×10^{-2} m.s
- Two wires of same material have length L and 2L and cross-100. sectional areas 4A and A respectively. The ratio of their specific resistance would be [MHCET 2002]

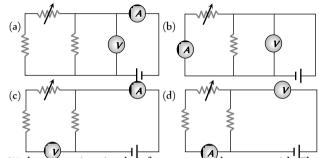
(a)	1:2	(b)	8:1
(c)	1:8	(d)	1:1

When a current flows through a conductor its temperature 110.

[MHCET 2002]

- (a) May increase or decrease
- (b) Remains same
- (c) Decreases
- (d) Increases

What length of the wire of specific resistance $48 \times 10^{-8} \Omega m$ is 111. needed to make a resistance of 4.2Ω (diameter of wire = 0.4 mm)


[CBSE PMT 2000; Pb. PMT 2002]

(a)	4.1 <i>m</i>	(b)	3.1 <i>m</i>
(c)	2.1 <i>m</i>	(d)	1.1 <i>m</i>

- A strip of copper and another of germanium are cooled from room 112. temperature to 80 K. The resistance of [AIEEE 2003]
 - (a) Each of these increases
 - (b) Each of these decreases
 - (c) Copper strip increases and that of germanium decreases
 - (d) Copper strip decreases and that of germanium increases

The length of a given cylindrical wire is increased by 100 %. Due to 113. the consequent decrease in diameter the change in the resistance of [AIEEE 2003] the wire will be

- (a) 300 % (b) 200 %
- (c) 100 % (d) 50 %
- Express which of the following setups can be used to verify Ohm's 114. [IIT-JEE (Screening) 2003] law

- two wires *A* and *B* of same mass and same material. 115. We have The diameter of the wire A is half of that B. If the resistance of wire A is 24 ohm then the resistance of wire B will be
 - (a) 12 Ohm (b) 3.0 Ohm
 - (c) 1.5 Ohm (d) None of the above
- In a hydrogen discharge tube it is observed that through a given 116. cross-section 3.13×10^{15} electrons are moving from right to left and 3.12×10^{15} protons are moving from left to right. What is the electric current in the discharge tube and what is its direction
 - 1 mA towards right (b) 1mA towards left (a)
 - (c) 2mA towards left (d) 2mA towards right
- A steady current *i* is flowing through a conductor of uniform cross-117. section. Any segment of the conductor has [MP PET 1996]
 - Zero charge (a)
 - (b) Only positive charge
 - (c) Only negative charge
 - (d) Charge proportional to current *i*

118. The length of the wire is doubled. Its conductance will be

- [Kerala PMT 2004] (a) Unchanged (b) Halved
- (c) Quadrupled (d) 1/4 of the original value
- A source of e.m.f. E = 15 V and having negligible internal resistance 119. is connected to a variable resistance so that the current in the circuit increases with time as i = 1.2 t + 3. Then, the total charge that will flow in first five second will be
 - (a) 10 C (b) 20 C
 - (c) 30 C (d) 40 C
- The new resistance of wire of $R \Omega$, whose radius is reduced half, is [] & K CET 120. (a) 16 R (b) 3 R (c) 2*R* (d) *R*
- 121. A resistance R is stretched to four times its length. Its new resistance will be [ISM Dhanbad 1994; UPSEAT 2003] (b) 64 *R* (a) 4 *R*

(d) $12 \times 10^{\circ} + 5\%$

(c) R/4 (d) 16 R122. What is the resistance of a carbon resistance which has bands of colours brown, black and brown [DCE 1999] (a) 100 Ω (b) 1000 Ω

(c) 10 Ω (d) 1 Ω 123. The lead wires should have [Pb. PMT 2000]

(a) Larger diameter and low resistance

(b) Smaller diameter and high resistance

- (c) Smaller diameter and low resistance
- (d) Larger diameter and high resistance
- **124.** The alloys constantan and manganin are used to make standard resistance due to they have

[MH CET 2000; NCERT 1990]

- (a) Low resistivity
- (b) High resistivity
- (c) Low temperature coefficient of resistance
- (d) Both (b) and (c)
- 125. When a potential difference is applied across the ends of a linear metallic conductor [MP PET 1997]
 - (a) The free electrons are accelerated continuously from the lower potential end to the higher potential end of the conductor
 - (b) The free electrons are accelerated continuously from the higher potential end to the lower potential end of the conductor
 - (c) The free electrons acquire a constant drift velocity from the lower potential end to the higher potential end of the conductor
 - $\left(d\right)$ $% \left(d\right)$ The free electrons are set in motion from their position of rest
- **126.** The electric resistance of a certain wire of iron is *R*. If its length and radius are both doubled, then [CBSE PMT 2004]
 - (a) The resistance will be doubled and the specific resistance will be halved
 - (b) The resistance will be halved and the specific resistance will remain unchanged
 - (c) The resistance will be halved and the specific resistance will be doubled
 - (d) The resistance and the specific resistance, will both remain unchanged
- **127.** A wire of diameter 0.02 *metre* contains 10⁻ free electrons per cubic metre. For an electrical current of 100 *A*, the drift velocity of the free electrons in the wire is nearly

[UPSEAT 2004]

2.

(a) $1 \times 10^{-} m/s$	(b) $5 \times 10^{-} m/s$
---------------------------	---------------------------

(c)
$$2 \times 10^{-1} m/s$$
 (d) $8 \times 10^{-1} m/s$

- 128. The following four wires are made of the same material and are at the same temperature. Which one of them has highest electrical resistance [UPSEAT 2004]
 - (a) Length = 50 *cm*, diameter = 0.5 *mm*
 - (b) Length = 100 *cm*, diameter = 1 *mm*
 - (c) Length = 200 *cm*, diameter = 2 *mm*
 - (d) Length = 300 *cm*, diameter = 3 *mm*
- **129.** The colour sequence in a carbon resistor is red, brown, orange and silver. The resistance of the resistor is

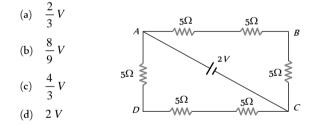
[DCE 2004]

(a)
$$21 \times 10^{\circ} \pm 10^{\circ}$$
 (b) $23 \times 10^{\circ} \pm 10^{\circ}$

(c) $21 \times 10^{\circ} \pm 5\%$

- **130.** A thick wire is stretched so that its length become two times. Assuming that there is no change in its density, then what is the ratio of change in resistance of wire to the initial resistance of wire
 - (a) 2:1 (b) 4:1

(c) 3:1 (d) 1:4


131. The length of the resistance wire is increased by 10%. What is the corresponding change in the resistance of wire

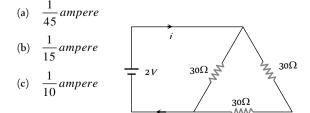
[MH CET 2004]

- (a) 10% (b) 25% (c) 21% (d) 9%
- 132. The electric field *E*, current density *J* and conductivity σ of a conductor are related as [Kerala PMT 2005]
 - (a) $\sigma = E/j$ (b) $\sigma = j/E$
 - (c) $\sigma = jE$ (d) $\sigma = 1/jE$
- 133. Two wires that are made up of two different materials whose specific resistance are in the ratio 2 : 3, length 3 : 4 and area 4 : 5. The ratio of their resistances is [Kerala PMT 2005]
 - (a) 6:5 (b) 6:8
 - (c) 5:8 (d) 1:2

Grouping of Resistances

1. The potential difference between points *A* and *B* of adjoining figure is [CPMT 1991]

Two resistors of resistance R_1 and R_2 having $R_1 > R_2$ are connected in parallel. For equivalent resistance R, the correct statement is [CPMT 1978; KCET (Med.) 2000]

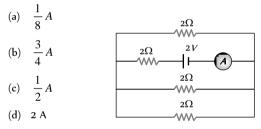

(a)
$$R > R_1 + R_2$$
 (b) $R_1 < R < R_2$

(c)
$$R_2 < R < (R_1 + R_2)$$
 (d) $R < R_1$

- A wire of resistance R is divided in 10 equal parts. These parts are connected in parallel, the equivalent resistance of such connection will be [CPMT 1973, 91]
 - (a) 0.01 *R* (b) 0.1 *R*
 - (c) 10 *R* (d) 100 *R*

4. The current in the adjoining circuit will be

[IIT 1983; CPMT 1991, 92; MH CET 2002; Pb. PMT 2001; Kerala PMT 2004]


- $\frac{1}{5}$ ampere (d)
- There are 8 equal resistances R. Two are connected in parallel, such 5. four groups are connected in series, the total resistance of the [MP PMT 1987] system will be
 - (a) *R* / 2 2 R (b)
 - (c) 4 R (d) 8 R
- 6. Three resistances of one ohm each are connected in parallel. Such connection is again connected with $2/3\Omega$ resistor in series. The resultant resistance will be [MP PMT 1985]

(a)	$\frac{5}{3}\Omega$	(b)	$\frac{3}{2}\Omega$
-----	---------------------	-----	---------------------

- (d) $\frac{2}{3}\Omega$ 1Ω (c)
- The lowest resistance which can be obtained by connecting 10 7. resistors each of 1/10 ohm is

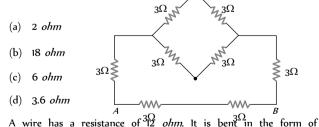
			[MP PMT 1984; EAMCET 1994]
(a)	$1/250\Omega$	(b)	$1/200\Omega$
(c)	$1/100\Omega$	(d)	$1/10\Omega$

8. The reading of the ammeter as per figure shown is

Three resistors each of 2 ohm are connected together in a triangular 9. shape. The resistance between any two vertices will be

[CPMT 1983; MP PET 1990; MP PMT 1993; DCE 2004] $(h) \quad 2/4 \quad ahm$

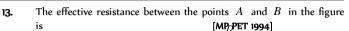
(a)	4/3 01111	(D)	3/4 01111
(c)	3 ohm	(d)	6 <i>ohm</i>

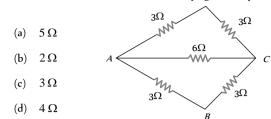

(a)

1/2 abov

- 10. There are n similar conductors each of resistance R. The resultant resistance comes out to be x when connected in parallel. If they are connected in series, the resistance comes out to be
 - x/n^2 (b) $n^2 x$ (a)

(c)
$$x/n$$
 (d) nx

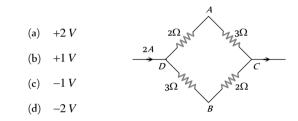

Equivalent resistance between A and B will be [CPMT 1981] 11.

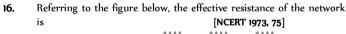


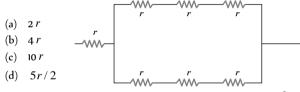
12. equilateral triangle. The effective resistance between any two corners of the triangle is

(a)	9 ohms	(b)	12 <i>ohm</i> s
(a)	9 011113	(0)	12 011113

(d) 8/3 ohms (c) 6 ohms


Three resistances of magnitude 2, 3 and 5 ohm are connected in 14. parallel to a battery of 10 volts and of negligible resistance. The potential difference across 3Ω resistance will be


(a)	2 volts	(b)	3 volts
-----	---------	-----	---------


15.

18.

- (c) 5 volts (d) 10 volts
- A current of 2 A flows in a system of conductors as shown. The potential difference $(V_A - V_B)$ will be [CPMT 1975, 76]

 $\frac{6}{8}$ ohm. Two resistances are joined in parallel whose resultant is 17. One of the resistance wire is broken and the effective resistance becomes 2Ω . Then the resistance in *ohm* of the wire that got broken was

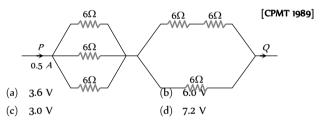
[DPMT 2004] [CPMT 1976; DPMT 1982] (a) 3/5 (b) 2 (d) 3 (c) 6/5 Given three equal resistors, how many different combination of all the three resistors can be made [NCERT 1970] (a) Six (b) Five (d) Three (c) Four

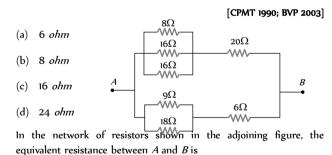
- Lamps used for household lighting are connected in 19.
 - (a) Series
 - (c) Mixed circuit (d) None of the above

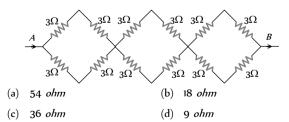
The equivalent resistance of resistors connected in series is always [CPMT 1984; 20.

(b) Parallel

- (a) Equal to the mean of component resistors
- Less than the lowest of component resistors (b)
- (c) In between the lowest and the highest of component resistors
- (d) Equal to sum of component resistors

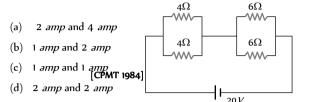

A cell of negligible resistance and e.m.f. 2 volts is connected to series 21. combination of 2, 3 and 5 ohm. The potential difference in volts between the terminals of 3 ohm resistance will be (a) 0.6


- (c) 3
- (d) 6
- Four wires of equal length and of resistances 10 ohms each are 22. connected in the form of a square. The equivalent resistance between two opposite corners of the square is


[NCERT 1977]

- 10 ohm (b) 40 *ohm* (a)
- 20 ohm (d) 10/4 ohm (c)
- Two resistors are connected (a) in series (b) in parallel. The 23. equivalent resistance in the two cases are 9 ohm and 2 ohm respectively. Then the resistances of the component resistors are
 - (a) 2 *ohm* and 7 *ohm* (b) 3 ohm and 6 ohm
 - (c) 3 ohm and 9 ohm (d) 5 ohm and 4 ohm
- Resistors of 1, 2, 3 ohm are connected in the form of a triangle. If a 24. 1.5 volt cell of negligible internal resistance is connected across 3 ohm resistor, the current flowing through this resistance will be
 - (a) 0.25 amp (b) 0.5 *amp*
 - (c) 1.0 amp (d) 1.5 amp
- 25. Resistances of 6 ohm each are connected in the manner shown in adjoining figure. With the current 0.5 ampere as shown in figure, the potential difference $V_P - V_Q$ is

26. The equivalent resistance of the arrangement of resistances shown in adjoining figure between the points A and B is


A wire is broken in four equal parts. A packet is formed by keeping 28. the four wires together. The resistance of the packet in comparison to the resistance of the wire will be

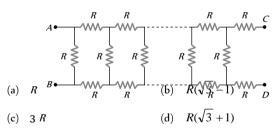
(a) Equal

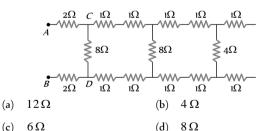
27.

[MP PET 1985; AFMC 2005]

- (d) $\frac{1}{16}th$
- Four resistances are connected in a circuit in the given figure. The 20 electric current flowing through 4 ohm and 6 ohm resistance is respectively [MP PET 1993]

An infinite sequence of resistance is shown in the figure. The resultant resistance between A and B will be, when $R_1 = 1 ohm$

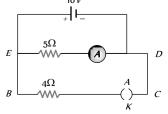

and $R_2 = 2 ohm$



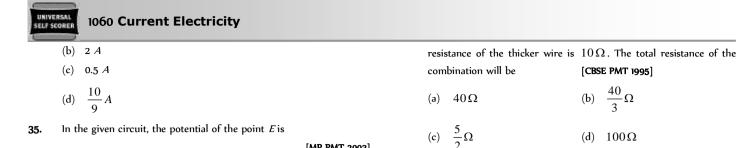
30.

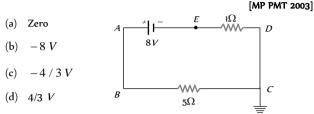
In the figure, the value of resistors to be connected between C and D so that the resistance of the entire circuit between A and B does not change with the number of elementary sets used is

32. In the figure shown, the total resistance between A and B is

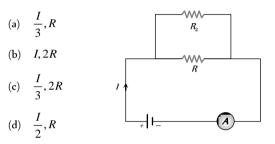


(a) 50 A

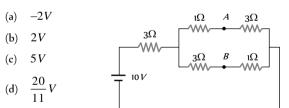

The current from the battery in circuit diagram shown is 33.


2O70 (a) 1 A 15*V* (b) 2 A ıΩ ≶ 6Ω ≷ 0.5Ω (c) 1.5 A (d) 3 A \sim 1111

In the given figure, when key $\overset{WV}{\mathcal{K}}$ is opened, the reading of the 34. ammeter A will be 10 V



[IIT 1989]


If a resistance R_2 is connected in parallel with the resistance R in 36. the circuit shown, then possible value of current through R and the possible value of R_2 will be

Four wires AB, BC, CD, DA of resistance 4 ohm each and a fifth 37. wire BD of resistance 8 ohm are joined to form a rectangle ABCD of which BD is a diagonal. The effective resistance between the points A and B is [MP PMT 1994]

(a) 24 *ohm* (b) 16 *ohm*
(c)
$$\frac{4}{3}ohm$$
 (d) $\frac{8}{3}ohm$

A battery of e.m.f. 10 V is connected to resistance as shown in figure. 38. The potential difference $V_A - V_B$ between the points A and B is

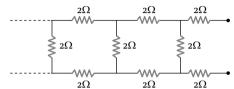
Three resistances, each of 1 ohm, are joined in parallel. Three such 39. combinations are put in series, then the resultant resistance will be (a)

(c) 1 *ohm* (d)
$$\frac{1}{3}ohm$$

A student has 10 resistors of resistance 'r'. The minimum resistance 40. made by him from given resistors is

[AFMC 1995]

45.

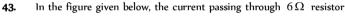

46.

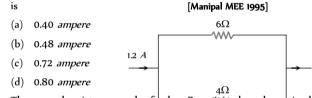
 $\frac{r}{10}$ (b) (a) 10 r

(c)
$$\frac{r}{100}$$
 (d) $\frac{r}{5}$

Two wires of same metal have the same length but their cross-41. sections are in the ratio 3:1. They are joined in series. The

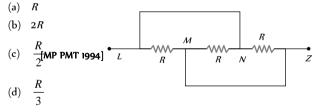
The equivalent resistance of the following infinite network of resistances is [AIIMS 1995]

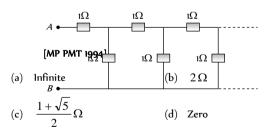



(a) Less than 4Ω

 4Ω (b)

42.


- (c) More than 4Ω but less than 12Ω
- 12Ω (d)



Three equal resistances each of value R are have as shown in the 44. figure. The equivalent resistance between M and N is

The equivalent resistance between points A and B of an infinite network of resistances each of 1Ω connected as shown, is

A copper wire of resistance R is cut into ten parts of equal length. Two pieces each are joined in series and then five such combinations are joined in parallel. The new combination will have a resistance

(a)
$$R$$
 (b) $\frac{R}{4}$

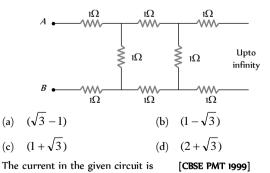
(c)
$$\frac{R}{5}$$
 (d) $\frac{R}{25}$

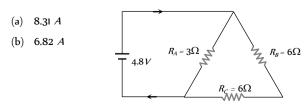
[AIIMS 1998]

A wire has resistance 12Ω . It is bent in the form of a circle. The 47. effective resistance between the two points on any diameter is equal to [JIPMER 1999] (a) 12Ω (b) 6Ω (c) 3Ω (d) 24 Ω In the circuit shown, the point 'B is earthed. The potential at the 48. point 'A' is 5Ω 7Ω B **^^^** 1 (a) 14 V ≶ 10Ω (b) 24 V 50VС 26 V (c) 3Ω (d) 50 V

- **49.** Three resistors each of 4Ω are connected together to form a network. The equivalent resistance of the network cannot be
 - (a) $1.33\,\Omega$ (b) $3.0\,\Omega$
 - (c) $6.0\,\Omega$ (d) $12.0\,\Omega$
- **50.** In the circuit shown below, the cell has an e.m.f. of 10 V and internal resistance of 1 *ohm*. The other resistances are shown in the figure. The potential difference $V_A V_B$ is

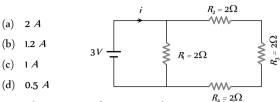
[MP PMT 1997]


- (a) 6 V E = 0 V $r = \Omega$
- (c) 2 V $4\Omega A 2\Omega$

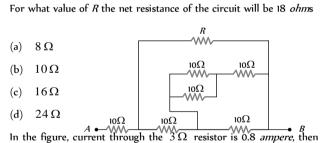


- A wire of resistance R is cut into 'n' equal parts. These parts are then connected in parallel. The equivalent resistance of the combination will be [MP PMT/PET 1998; BHU 2005]
 - (a) *nR* (b)
 - (c) $\frac{n}{R}$ (d) $\frac{R}{n^2}$

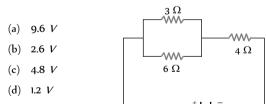
53.


52. The resistance between the terminal points A and B of the given
infinitely long circuit will be[MP PMT/PET 1998]

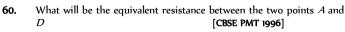
- (c) 4.92 A
- (d) 2 A

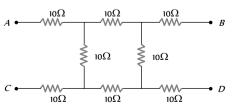

54. What is the current (i) in the circuit as shown in figure

55. *n* equal resistors are first connected in series and then connected in parallel. What is the ratio of the maximum to the minimum resistance [KCET 1994]


(a)
$$n$$
 (b) $\frac{1}{n^2}$
(c) n^2 (d) $\frac{1}{n}$

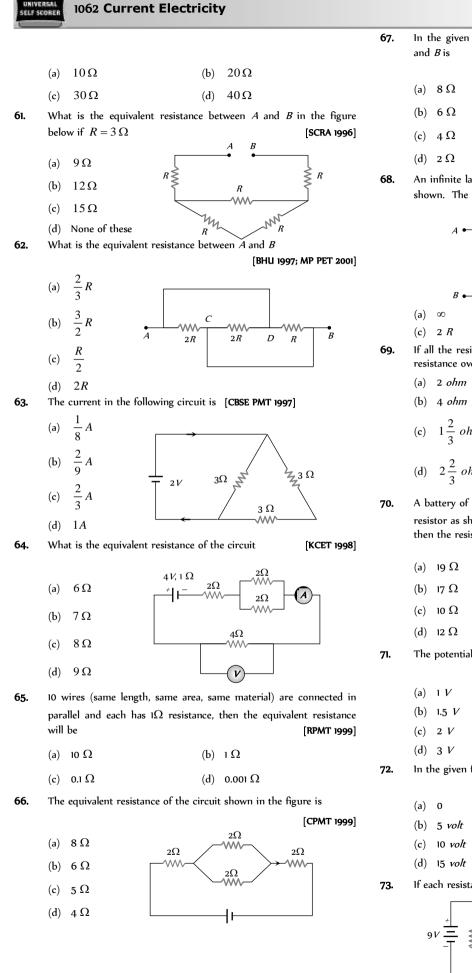
- 56. A uniform wire of 16Ω is made into the form of a square. Two opposite corners of the square are connected by a wire of resistance 16Ω . The effective resistance between the other two opposite corners is [EAMCET (Med.) 1995]
 - (a) 32Ω (b) 20Ω
 - (c) 8Ω (d) 4Ω

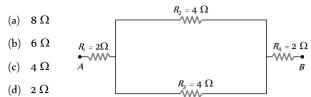

potential drop through 4Ω resistor is

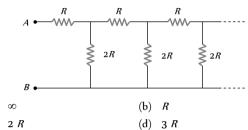

[CBSE PMT 1993; AFMC 1999; MP PMT 2004]

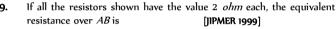
59. Three resistances 4Ω each of are control in the form of an equilateral triangle. The effective resistance between two corners is

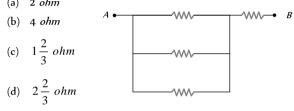
(a)
$$8 \Omega$$
 (b) 12Ω
(c) $\frac{3}{8} \Omega$ (d) $\frac{8}{3} \Omega$

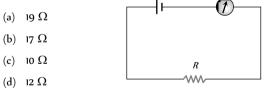



58.

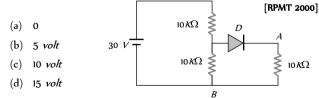

57.

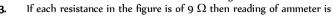


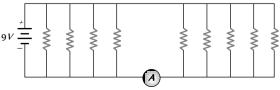

57. In the given figure, the equivalent resistance between the points A and B is [AIIMS 1999]


8. An infinite ladder network is arranged with resistances *R* and 2 *R* as shown. The effective resistance between terminals *A* and *B* is

70. A battery of *emf* 10 V and internal resistance 3Ω is connected to a resistor as shown in the figure. If the current in the circuit is 0.5 A. then the resistance of the resistor will be




. The potential drop across the 3 Ω resistor is


[CPMT 2000]

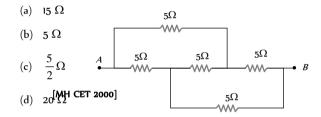
(a) 1 V(b) 1.5 V(c) 2 V(d) 2 V

(d) 10 *ohms*

80. A uniform wire of resistance 9 Ω is cut into 3 equal parts. They are connected in the form of equilateral triangle *ABC*. A cell of e.m.f. 2 *V* and negligible internal resistance is connected across *B* and *C*. Potential difference across *AB* is

[Kerala (Engg.) 2001]

(a) 1 V (b) 2 V


(c) 3 V (d) 0.5 V

81. [EAMIGETr (Med) 3000] resistances 2 Ω , 4 Ω and 8 Ω are connected in parallel, then the equivalent resistance of the combination will be[KCET 2001]

$\frac{8}{7}\Omega$	(b)	$\frac{7}{8}\Omega$
	$\frac{8}{7}\Omega$	$\frac{8}{7}\Omega$ (b)

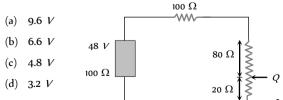
(c)
$$\frac{7}{4}\Omega$$
 (d) $\frac{4}{9}\Omega$

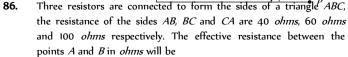
82. Effective resistance between *A* and *B* is [UPSEAT 2001]

83. The effective resistance of two resistors in parallel is $\frac{12}{7} \Omega$. If one of the resistors is disconnected the resistance becomes 4 Ω . The

resistance of the other resistor is [MH CET 2002]

(a)
$$4 \Omega$$
 (b) 3Ω


(c)
$$\frac{12}{7} \Omega$$
 (d) $\frac{7}{12} \Omega$

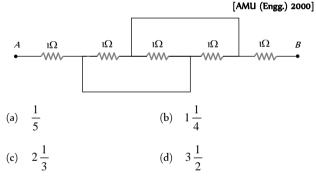

84. Two resistance wires on joining in parallel the resultant resistance is $\frac{6}{5} ohms$. One of the wire breaks, the effective resistance is 2 ohms. The resistance of the broken wire is

[MP PET 2001, 2002]

(a)
$$\frac{3}{5} ohm$$
 (b) 2 ohm
(c) $\frac{6}{5} ohm$ (d) 3 ohm

85. In the circuit, the potential difference across PQ will be nearest to

- **74.** Four resistances 10 Ω , 5 Ω , 7 Ω and 3 Ω are connected so that they form the sides of a rectangle *AB*, *BC*, *CD* and *DA* respectively. Another resistance of 10 Ω is connected across the diagonal *AC*. The equivalent resistance between *A* and *B* is
 - (a) 2Ω (b) 5Ω
 - (c) 7 Ω (d) 10 Ω
- **75.** Two wires of equal diameters, of resistivities ρ_1 and ρ_2 and lengths *l* and *l*, respectively, are joined in series. The equivalent resistivity of the combination is

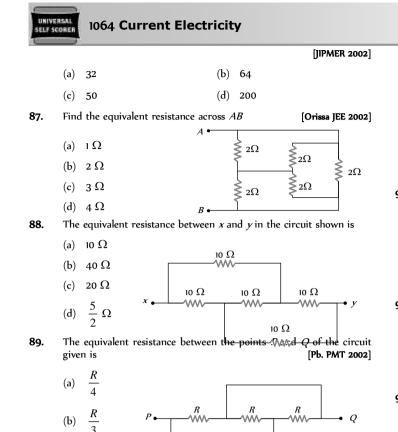

[EAMCET (Engg.) 2000]

(a)
$$\frac{\rho_1 l_1 + \rho_2 l_2}{l_1 + l_2}$$
 (b) $\frac{\rho_1 l_2 + \rho_2 l_1}{l_1 - l_2}$
(c) $\frac{\rho_1 l_2 + \rho_2 l_1}{l_1 + l_2}$ (d) $\frac{\rho_1 l_1 - \rho_2 l_2}{l_1 - l_2}$

76. Four resistances of 100 Ω each are connected in the form of square. Then, the effective resistance along the diagonal points is

(a)	200 Ω	(b)	400 Ω	
(c)	100 Ω	(d)	150 Ω	

77. Equivalent resistance between the points *A* and *B* is (in Ω)



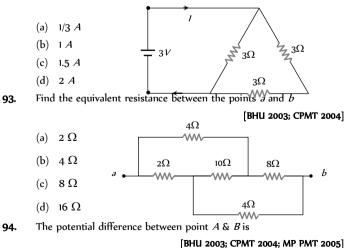
78. Two wires of the same material and equal length are joined in parallel combination. If one of them has half the thickness of the other and the thinner wire has a resistance of 8 *ohms*, the resistance of the combination is equal to

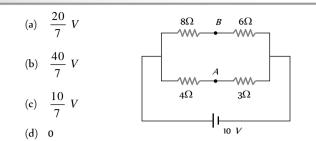
[AMU (Engg.) 2000]

(a)
$$\frac{5}{8}$$
 ohms
(b) $\frac{8}{5}$ ohms
(c) $\frac{3}{8}$ ohms
(d) $\frac{8}{3}$ ohms

79. In the circuit shown here, what is the value of the unknown resistor R so that the total resistance of the circuit between points P and Q is also equal to R [MP PET 2001]

(d) 2 *R*


90. Two wires of the same dimensions but resistivities ρ_1 and ρ_2 are connected in series. The equivalent resistivity of the combination is

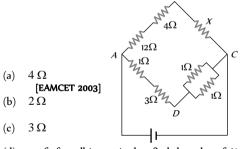

(a)
$$\rho_1 + \rho_2$$
 (b) $\frac{\rho_1 + \rho_2}{2}$
(c) $\sqrt{\rho_1 \rho_2}$ (d) $2(\rho_1 + \rho_2)$

91. Three unequal resistors in parallel are equivalent to a resistance 1 *ohm.* If two of them are in the ratio 1 : 2 and if no resistance value is fractional, the largest of the three resistances in *ohms* is

(a)	4	(b)	6
(c)	8	(d)	12

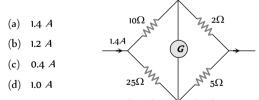
92. A 3*volt* battery with negligible internal resistance is connected in a circuit as shown in the figure. The current *l* in the circuit will be

95. In the circuit shown below, The reading of the voltmeter V is

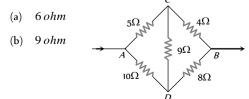

(a) 12 [MP PMT 2002] (b) 8 V(c) 20 V(d) 16 V 16Ω 16Ω 16Ω 4Ω 16Ω 16Ω

96. A wire has a resistance of 12 *Whrm.* It is bent in the form of equilateral triangle. The effective resistance between any two corners of the triangle is

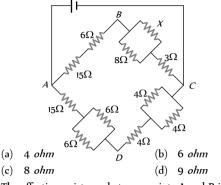
(a) 9 <i>ohm</i> s	(b) 12 <i>ohm</i> s
--------------------	---------------------

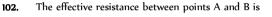

- (c) 6 ohms (d) 8/3 ohms
- 97. A series combination of two resistors 1 Ω each is connected to a 12 V battery of internal resistance 0.4 Ω . The current flowing through it will be [MH CET (Med.) 1999]
 - (a) 3.5 A (b) 5 A(c) 6 A (d) 10 A
- **98.** In the circuit shown in the adjoining figure, the current between *B* [KCET 2093] zero, the unknown resistance is of

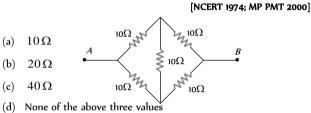
[CPMT 1986]


(d) em.f. of a cell is required to find the value of X [AIEEE 2003]

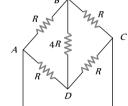
99. In the circuit shown in the figure, the current flowing in 2Ω resistance [CPMT 1989; MP PMT 2004]




100. Five resistors are connected as shown in the diagram. The equivalent resistance between A and B is


[MP PMT 1996]

- (d) 15 ohm
- In the figure given the value of X resistance will be, when the p.d. 101. between *B* and *D* is zero [MP PET 1993]



Five resistors of given values are connected together as shown in the 103. figure. The current in the arm BD will be

[MP PMT 1995]

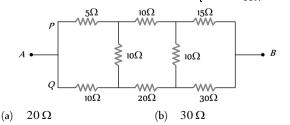
- (a) Half the current in the e arm ABC
- (b) Zero
- Twice the current in the arm ABC (c)
- (d) Four times the current in the arm *ABC*
- In the network shown in the figure, each of the resistance is equal to 104. 2Ω . The resistance between the points A and B is

 1Ω (a)

3Ω (c)

(d)
$$2\Omega$$

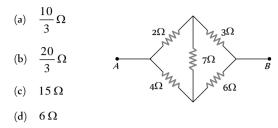
~~~~ 105. In the arrangement of resistances shown below, the effective resistance between points A and B is


22

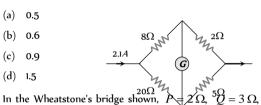
[MP PMT 1997; RPET 2001]

[CBSE PMT 1995]

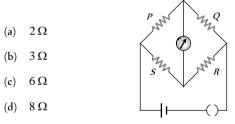
110.


111.




(c) 
$$90 \Omega$$

106 Five resistances are connected as shown in the figure. The effective resistance between the points A and B is


[MP PMT 1999; KCET 2001; BHU 2001, 05]



107. In the given figure, when galvanometer shows no deflection, the current (in ampere) flowing through  $5 \Omega$  resistance will be



 $= 2\Omega, 5Q = 3\Omega, R = 6\Omega$ 108. and  $S = 8 \Omega$ . In order to obtain balance, shunt resistance across 'S [SCRA 1998] must be

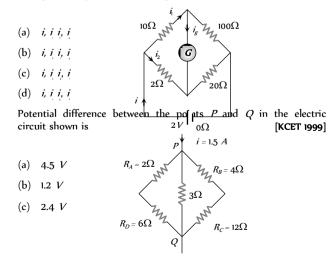


109. Five equal resistances each of value R are connected in a form shown alongside. The equivalent resistance of the network

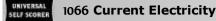
- (a) Between the points B and D is R
- Z Between the points B and D is (b) R

R

R


Z

R


Between the points A and C is R(c)

Between the points A and C is  $\frac{\pi}{2}$ (d)

In the circuit shown below the resistance of the galvanometer is 20  $\Omega$ . In which case of the following alternatives are the currents arranged strictly in the decreasing order



(d)  $110\,\Omega$ 



#### 2.88 V (d)

112. The current between *B* and *D* in the given figure is

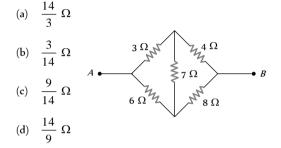
[RPET 2000; DCE 2001]

<u>30</u>Ω

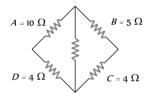
<u>30Ω</u>

- 1 amp (a) (b) 2 amp
- (c) Zero

(d) 0.5 amp


- 113.
  - 30 V In the given figure, equivalent  $\underline{1}$  sistance between A and B will be

 $30\Omega$ 


60Ω

Zy

<u>30Ω</u> 24



114. In a typical Wheatstone network, the resistances in cyclic order are  $A = 10 \ \Omega, B = 5 \ \Omega, C = 4 \ \Omega$  and  $D = 4 \ \Omega$  for the bridge to be balanced [KCET 2000]



- (a) 10  $\Omega$  should be connected in parallel with A
- (b) 10  $\Omega$  should be connected in series with A
- 5  $\Omega$  should be connected in series with *B* (c)
- (d) 5  $\Omega$  should be connected in parallel with *B*
- In the circuit shown in figure, the current drawn from the battery is 115. 4A. If 10  $\Omega$  resistor is replaced by 20  $\Omega$  resistor, then current drawn from the circuit will be

ıΩ

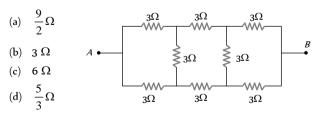
7Ω

[KCET 2000; CBSE PMT 2001]

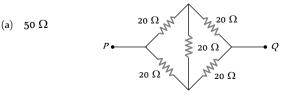
Z 3Ω

44

21Ω


 $10\Omega$ 



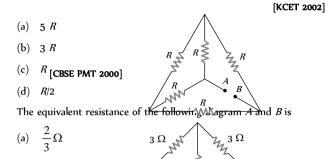

Calculate the equivalent resistance between  $4^{-}$  and B 116.

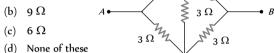
[UPSEAT 2001]

123.

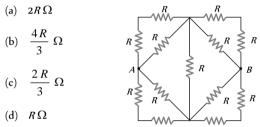


The equivalent resistance between P and Q in the given figure, is 117.





- (b) 40 Ω
- (c) 30 Ω

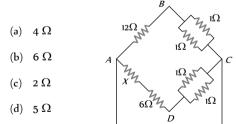
(d) 20 Ω


119.

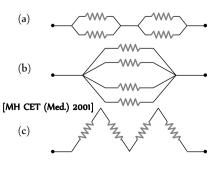
If each of the resistance of the network shown in the figure is *R*, the 118. equivalent resistance between A and B is






120. Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the figure below. The effective resistance between A and B is [KCET 2003]




In a Wheatstone's bridge all the four arms have equal resistance R. 121. If the resistance of the galvanometer arm is also R, the equivalent resistance of the combination as seen by the battery is



122. For what value of unknown resistance X, the potential difference between B and D will be zero in the circuit shown in the figure



Which arrangement of four identi al resistances should be used to draw maximum energy from a cell of voltage V[MP PMT 2004]



- **124.** An unknown resistance *R* is connected in series with a resistance of 10  $\Omega$ . This combinations is connected to one gap of a metre bridge while a resistance *R* is connected in the other gap. The balance point is at 50 *cm*. Now, when the 10  $\Omega$  resistance is removed the balance point shifts to 40 *cm*. The value of *R* is (in *ohm*)
  - (a) 60 (b) 40
  - (c) 20 (d) 10
- **125.** A wire has a resistance of 6  $\Omega$ . It is cut into two parts and both half values are connected in parallel. The new resistance is ....

| (a) 12 Ω | (b) | 1.5 Ω |
|----------|-----|-------|
|----------|-----|-------|

- (c)  $3 \Omega$  (d)  $6 \Omega$
- 126. Six equal resistances are connected between points *P*, *Q* and *R* as shown in the figure. Then the net resistance will be maximum between[11T-JEE (Screening) 2004]
  - (a) P and Q
  - (b) Q and R

(c) P and R

(a)

(b)

(c)

(d) Any two points

127. The total current supplied to the circuit the battery is

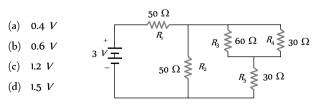
- (d) 6 A
- **128.** An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be

|     | •   | e | ÷ |         |              |
|-----|-----|---|---|---------|--------------|
|     |     |   |   |         | [AIEEE 2004] |
| (a) | 3   |   |   | (b) 1/3 |              |
| (c) | 8/9 |   |   | (d) 2   |              |

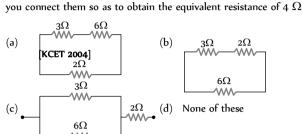
**129.** If a rod has resistance 4  $\Omega$  and if rod is turned as half cycle then the resistance along diameter **[BCECE 2004]** 

| (a) $1.56 \Omega$ (b) $2.44 \Omega$ | (a) | 1.56 $\Omega$ | (b) | 2.44 Ω |
|-------------------------------------|-----|---------------|-----|--------|
|-------------------------------------|-----|---------------|-----|--------|

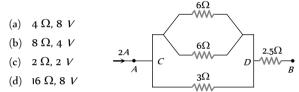
- (c)  $4 \Omega$  (d)  $2 \Omega$
- 130. If three resistors of resistance  $2\Omega$ ,  $4\Omega$  and  $5\Omega$  are connected in parallel then the total resistance of the combination will be [Pb. PMT 2004]


(a) 
$$\frac{20}{19}\Omega$$
 (b)  $\frac{19}{20}\Omega$ 

(c) 
$$\frac{19}{10}\Omega$$
 (d)  $\frac{10}{19}\Omega$ 

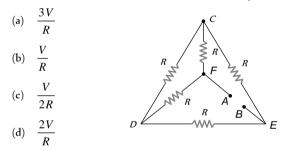

**131.** In circuit shown below, the resistances are given in ohms and the battery is assumed ideal with emf equal to 3 *volt*. The voltage across the resistance R is

#### [UPSEAT 2004; Kerala PMT 2004]

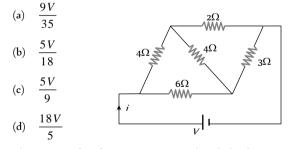

[AIEEE 2004]



- **132.** A parallel combination of two resistors, of 1  $\Omega$  each, is connected in series with a 1.5  $\Omega$  resistor. The total combination is connected across a 10 V battery. The current flowing in the circuit is
  - (a) 5 A (b) 20 A
  - (c) 0.2 A (d) 0.4 A
- 133. [KClfTy2004]re provided three resistances 2  $\Omega,$  3  $\Omega$  and 6  $\Omega.$  How will




**134.** The equivalent resistance and potential difference between *A* and *B* for the circuit is respectively **[Pb. PMT 2003]** 

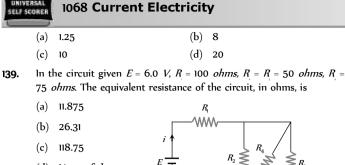



**135.** Five equal resistances each of resistance *R* are connected as shown in the figure. *A* battery of *V* volts is connected between *A* and *B*. The current flowing in *AFCEB* will be

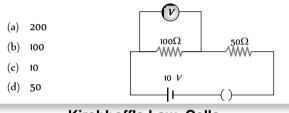
[CBSE PMT 2004]



**136.** For the network shown in the figure the value of the current i is

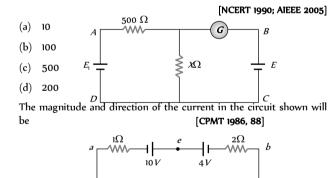



**137.** When a wire of uniform cross-section a, length *I* and resistance R is bent into a complete circle, resistance between any two of diametrically opposite points will be


[CBSE PMT 2005]



**138.** The current in a simple series circuit is 5.0 *amp*. When an additional resistance of 2.0 *ohms* is inserted, the current drops to 4.0 *amp*. The original resistance of the circuit in ohms was




- (d) None of these By using only two resistance coils-singly, in series, or in parallel one
- 140. should be able to obtain resistances of 3, 4, 12 and 16 ohms. The separate resistances of the coil are [KCET 2005]
  - (a) 3 and 4 (b) 4 and 12
  - (c) 12 and 16 (d) 16 and 3
- In the given circuit, the voltmeter records 5 volts. The resistance of 141. [KCET 2005] the voltmeter in ohms is



## Kirchhoff's Law, Cells

l. In the adjoining circuit, the battery  $E_1$  has an *e.m.f.* of 12 voltand zero internal resistance while the battery E has an e.m.f. of 2 volt. If the galvanometer G reads zero, then the value of the resistance X in ohm is



- $3\Omega$ A from a to b through e(a) (b)  $\frac{7}{2}$  A from b to a through e
- (c) 1A from b to a through e

2.

3.

- (d) 1A from a to b through e
- A cell of e.m.f. 1.5 V having a finite internal resistance is connected to a load resistance of  $2\Omega$ . For maximum power transfer the internal resistance of the cell should be [BIT 1988]

| (a) | 4 ohm | (b) | 0.5 <i>ohm</i> | - |
|-----|-------|-----|----------------|---|
|     |       |     |                |   |

(d) None of these (c) 2 *ohm* 

- By a cell a current of 0.9 A flows through 2 ohm resistor and 0.3 A 4. through 7 ohm resistor. The internal resistance of the cell is [KCET 2003]
  - (b) 1.0 Ω  $0.5 \Omega$ (a)
  - (c) 1 [**KCET 2005**] (d)  $2.0\,\Omega$ The e.m.f. of a cell is E volts and internal resistance is r ohm. The
  - resistance in external circuit is also r ohm. The p.d. across the cell will be [CPMT 1985; NCERT 1973]
    - (a) *E*/2 (b) 2*E*
    - (c) 4*E* (d) *E*/4
  - A cell of e.m.f. E is connected with an external resistance R, then p.d. across cell is V. The internal resistance of cell will be [MNR 1987; Kerala 1

(a) 
$$\frac{(E-V)R}{E}$$
 (b)  $\frac{(E-V)R}{V}$ 

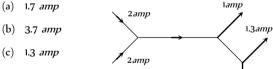
(c) 
$$\frac{(V-E)R}{V}$$
 (d)  $\frac{(V-E)R}{E}$ 

Two cells, e.m.f. of each is E and internal resistance r are connected in parallel between the resistance R. The maximum energy given to the resistor will be, only when

#### [MNR 1988; MP PET 2000; UPSEAT 2001]

- (a) R = r/2(b) R = r
- (c) R = 2r(d) R = 0
- Kirchhoff's first law *i.e.*  $\Sigma i = 0$  at a junction is based on the law 8. of conservation of [CBSE PMT 1997; AllMS 2000;

#### MP PMT 2002; RPMT 2001; DPMT 2005]


[RPET 2003; MH CET 2001]

(d) Angular momentum

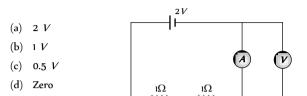
- (a) Charge (b) Energy
- (c) Momentum

Kirchhoff's second law is based on the law of conservation of 9.

- (a) Charge
- (b) Energy (d) Sum of mass and energy (c) Momentum
- The figure below shows currents in a part of electric circuit. The 10. current i is [CPMT 1981; RPET 1999]
  - 1.7 *amp* (a) (b) 3.7 amp



- (d) 1 amp
- The terminal potential difference of a cell is greater than its e.m.f. 11. when it is
  - (a) Being discharged
  - (b) In open circuit
  - (c) Being charged
  - (d) Being either charged or discharged
- In the circuit shown, potential difference between X and Y will be 12.


Zero 40Ω (a) ᠕᠕᠕ (b) 20 V (c) 60 V (d) 120 V  $20\Omega$  $\sim$ 120*V* 

7.

5.

6.

- In the above question, potential difference across the  $40\,\Omega$ 13. resistance will be (a) Zero (b) 80 V
  - (d) 120 V (c) 40 V
- In the circuit shown, A and V are ideal ammeter and voltmeter 14. respectively. Reading of the voltmeter will be



- When a resistance of 2 *ohm* is connected across the terminals of a cell, 15. the current is 0.5 *amperes*. When the resistance is increased to 5 *ohm*, the current is 0.25 amperes. The internal resistance of the cell is
  - (b) 1.0 *ohm* (a) 0.5 ohm
  - (c) 1.5 *ohm* (d) 2.0 ohm
- The terminal potential difference of a cell when short-circuited is 16 (E = E.M.F. of the cell)

| (a) | Ε    | (b) | E/2 |
|-----|------|-----|-----|
| (c) | Zero | (d) | E/3 |

A primary cell has an e.m.f. of 1.5 volts, when short-circuited it gives 17. a current of 3 amperes. The internal resistance of the cell is

| (a) 4.5 <i>ohm</i> | (b) | 2 ohm |
|--------------------|-----|-------|
|--------------------|-----|-------|

- (c) 0.5 *ohm* (d) 1/4.5 *ohm*
- 18. A 50 V battery is connected across a 10 *ohm* resistor. The current is 4.5 amperes. The internal resistance of the battery is

| (a) | Zero           | (b) | 0.5 <i>ohm</i> |
|-----|----------------|-----|----------------|
| (c) | 1.1 <i>ohm</i> | (d) | 5.0 <i>ohm</i> |

The potential difference in open circuit for a cell is 2.2 volts. When a 19. 4 ohm resistor is connected between its two electrodes the potential difference becomes 2 volts. The internal resistance of the cell will be [AAD DAAT 1084. SCRA 1094: CBSE PMT 2002]

|     |                | [MP PMT 1984; SCKA 1994; CDSE PMT | 2 |
|-----|----------------|-----------------------------------|---|
| (a) | 1 <i>ohm</i>   | (b) 0.2 <i>ohm</i>                |   |
| (c) | 2.5 <i>ohm</i> | (d) 0.4 <i>ohm</i>                |   |
|     | a              | 1 0 0 1 . 0                       |   |

20. A new flashlight cell of e.m.f. 1.5 volts gives a current of 15 amps, when connected directly to an ammeter of resistance  $0.04\,\Omega$ . The internal resistance of cell is [MP PET 1994]

| (a) | $0.04\Omega$ | (b) | $0.06\Omega$ |
|-----|--------------|-----|--------------|
| (c) | 0.10 Ω       | (d) | $10\Omega$   |

A cell whose e.m.f. is 2 V and internal resistance is  $0.1\Omega$ , is 21. connected with a resistance of  $3.9\,\Omega$ . The voltage across the cell terminal will be

> [CPMT 1990; MP PET 1993; CBSE PMT 1999; AFMC 1999; Pb. PMT 2000; AllMS 2001]

| (a) | 0.50 <i>V</i> | (b) | 1.90 V |
|-----|---------------|-----|--------|
| (c) | 1.95 V        | (d) | 2.00 V |

22. The reading of a high resistance voltmeter when a cell is connected across it is 2.2 V. When the terminals of the cell are also connected to a resistance of  $5\,\Omega$  the voltmeter reading drops to 1.8 V. Find the internal resistance of the cell

| (a) | $1.2 \Omega$ | (b) | $1.3 \Omega$ |
|-----|--------------|-----|--------------|
| (u) | 1.200        | (0) | 1.5 44       |

- (c)  $1.1\Omega$ (d) 1.4 Ω
- 23. When cells are connected in parallel, then

- (a) The current decreases (b) The current increases
- (c) The e.m.f. increases (d) The e.m.f. decreases
- The internal resistance of a cell depends on
- (a) The distance between the plates
  - (b) The area of the plates immersed
  - (c) The concentration of the electrolyte
- All the above (d)

24.

25.

n identical cells each of e.m.f. E and internal resistance r are connected in series. An external resistance R is connected in series to this combination. The current through R is

[DPMT 2002]

(a) 
$$\frac{nE}{R+nr}$$
  
(b)  $\frac{nE}{nR+r}$   
(c)  $\frac{E}{R+nr}$   
(d)  $\frac{nE}{R+r}$ 

A cell of internal resistance r is connected to an external resistance 26. R. The current will be maximum in R, if

[CPMT 1982]

| (a) | R = r | (b) | R < r   |
|-----|-------|-----|---------|
| (c) | R > r | (d) | R = r/2 |

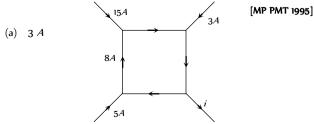
- To get the maximum current from a parallel combination of n27. identical cells each of internal resistance r in an external resistance R, when [CPMT 1976, 83] [DPMT 1999]
  - (a) R >> r(b) *R* << *r* (c) R = r(d) None of these
- Two identical cells send the same current in  $2\Omega$  resistance, [CPMT 1985; BHU 1997; Pb. PMT 2001] whether connected in series or in parallel. The internal resistance of 28. the cell should be

#### [NCERT 1982; Kerala PMT 2002]

| (a) | $1\Omega$ |  | (b) | $2\Omega$ |
|-----|-----------|--|-----|-----------|
|     |           |  |     |           |

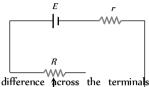
- (c)  $\frac{1}{2}\Omega$ (d) 2.5 Ω
- The internal resistances of two cells shown are  $0.1\Omega$  and  $0.3\Omega$ . 29.

If  $R = 0.2 \Omega$ , the potential difference across the cell


|                              | 2 V, 0.1Ω<br> | 2 V, 0.3Ω |
|------------------------------|---------------|-----------|
| (a) <i>B</i> will be zero    |               |           |
| (b) A will be zero           |               |           |
| (c) $A$ and $B$ will be $2V$ | 0.            | 2Ω        |

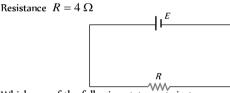
(d) A will be > 2V and B will be < 2V

A torch battery consisting of two cells of 1.45 volts and an internal 30. resistance  $0.15\,\Omega$ , each cell sending currents through the filament of the lamps having resistance 1.5 ohms. The value of current will be[MP PET 19


- (a) 16.11 amp (b) 1.611 amp
- (c) 0.1611 amp (d) 2.6 amp
- The electromotive force of a primary cell is 2 volts. When it is short-31. circuited it gives a current of 4 amperes. Its internal resistance in ohms is [MP PET 1995] (a) 0.5 (b) 5.0
  - (d) 8.0

 $\begin{array}{c} (c) & 2.0 \\ \textbf{KCET} & \textbf{2003; MP PMT 2003} \\ \textbf{32.} & The figure shows a network of currents. The magnitude of currents \\ \end{array}$ is shown here. The current *i* will be




[MNR 1983]

- (b) 13 A
- (c) 23 A
- (d) -3A
- 33. A battery of e.m.f. E and internal resistance r is connected to a variable resistor R as shown here. Which one of the following is true



- (a) Potential difference across the terminals of the battery is maximum when R = r
- (b) Power delivered to the resistor is maximum when R = r
- (c) Current in the circuit is maximum when R = r
- (d) Current in the circuit is maximum when R >> r
- A dry cell has an e.m.f. of 1.5 V and an internal resistance of 34.  $0.05\,\Omega$ . The maximum current obtainable from this cell for a very short time interval is [Harvana CEE 1996]
  - (a) 30 A (b) 300 A
  - (c) 3 A (d) 0.3 A
- Consider the circuit given here with the following parameters 35.

E.M.F. of the cell = 12 V. Internal resistance of the cell =  $2 \Omega$ .

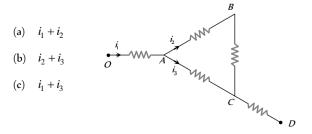


Which one of the following statements in true

- (a) Rate of energy loss in the source is = 8 W
- (b) Rate of energy conversion in the source is 16 W
- (c) Power output in is = 8 W

(a) 5

- (d) Potential drop across R is = 16 V
- A current of two amperes is flowing through a cell of e.m.f. 5 volts 36. and internal resistance 0.5 ohm from negative to positive electrode. If the potential of negative electrode is 10 V, the potential of positive electrode will be


|   |          | [MP PMT 1997] |
|---|----------|---------------|
| V | (b) 14 V |               |

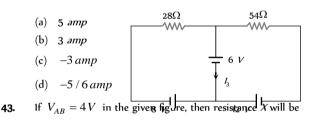
- (d) 16 V (c) 15 V
- 100 cells each of e.m.f. 5 V and internal resistance 1 ohm are to be 37. arranged so as to produce maximum current in a 25 ohms resistance. Each row is to contain equal number of cells. The number of rows should be [MP PMT 1997] (a) 2 (h) 4

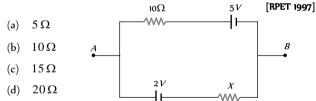
| $(\mathbf{a})$ | 2 | (U) | 4  |
|----------------|---|-----|----|
| (c)            | 5 | (d) | 10 |

The current in the arm *CD* of the circuit will be 38.

[MP PMT/PET 1998; MP PMT 2000; DPMT 2000]




(d)  $i_1 - i_2 + i_3$ 


When a resistance of 2 ohm is connected across the terminals of a 39. cell, the current is 0.5 A. When the resistance is increased to 5 ohm, the current is 0.25 A. The e.m.f. of the cell is

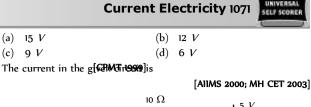
[MP PET 1999, 2000; Pb. PMT 2002; MP PMT 2000]

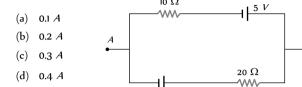
| (a) | 1.0[N/P PMT 1995] | (b) | 1.5 V |
|-----|-------------------|-----|-------|
|     |                   |     |       |

- (c) 2.0 V (d) 2.5 V
- 40. Two non-ideal identical batteries are connected in parallel. Consider the following statements [MP PMT 1999]
  - The equivalent e.m.f. is smaller than either of the two e.m.f.s (i) The equivalent internal resistance is smaller than either of the (ii) two internal resistances
  - Both (i) and (ii) are correct (a)
  - (b) (i) is correct but (ii) is wrong
  - (c) (ii) is correct but (i) is wrong
  - (d) Both (i) and (ii) are wrong
- If six identical cells each having an e.m.f. of 6V are connected in 41. parallel, the e.m.f. of the combination is
  - [EAMCET (Med.) 1995; Pb. PMT 1999; CPMT 2000] (a) 1 V (b) 36 V
  - (c)  $\frac{1}{6}V$ (d) 6 V
- Consider the circuit shown in the figure. The current  $I_3$  is equal to 42.






Two resistances  $R_1$  and  $R_2$  are joined as shown in the figure to 44. two batteries of e.m.f.  $E_1$  and  $E_2$ . If  $E_2$  is short-circuited, the


current through  $R_1$  is [NDA 1995]  $R_{\rm I}$ (a)  $E_1 / R_1$ ~~~~ (b)  $E_2 / R_1$ (c)  $E_2 / R_2$ 

(d) 
$$E_1 / (R_2 + R_1)$$
  
A storage battery has e.m.f. 15 *volts* and internal resistance

0.05 45. ohm. Its terminal voltage when it is delivering 10 ampere is

- (a) 30 volts (b) 1.00 volts
- (c) 14.5 volts (d) 15.5 volts
- 46. The number of dry cells, each of e.m.f. 1.5 volt and internal resistance 0.5 ohm that must be joined in series with a resistance of 20 ohm so as to send a current of 0.6 ampere through the circuit is
  - (a) 2 (b) 8 (c) 10 (d) 12
- 47. Emf is most closely related to [DCE 1999] (a) Mechanical force (b) Potential difference





A current of 2.0 *ampere* passes through a cell of e.m.f. 1.5 *volts* 59. having internal resistance of 0.15 ohm. The potential difference measured, in volts, across both the ends of the cell will be


| (a) | 1.35 | (b) | 1.50 |
|-----|------|-----|------|
| (c) | 1.00 | (d) | 1.20 |

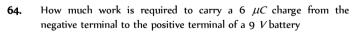
60. A battery has e.m.f. 4 V and internal resistance r. When this battery is connected to an external resistance of 2 ohms, a current of 1 amp. flows in Athense in the terminals of the battery are connected directly

[MP PET 2001]

| (a) 1 <i>amp</i> | (b) 2 <i>amp</i> |
|------------------|------------------|
| (c) 4 <i>amp</i> | (d) Infinite     |

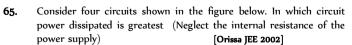
Two batteries A and B each of e.m.f. 2 V are connected in series to an external resistance R = 1 ohm. If the internal resistance of battery A is 1.9 ohms and that of B is 0.9 ohm, what is the potential difference between the terminals of battery A

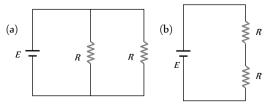


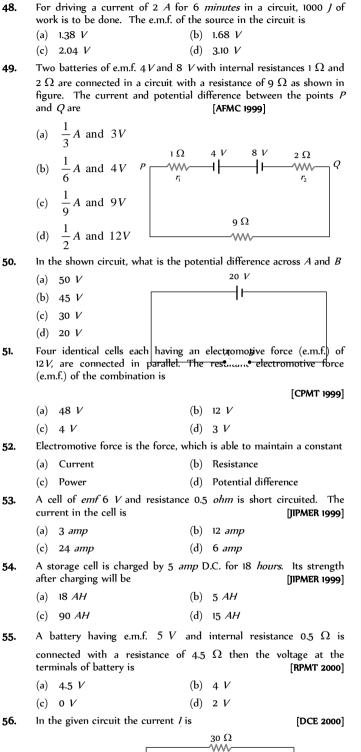

When a resistor of 11  $\Omega$  is connected in series with an electric cell, 62. the current flowing in it is 0.5 A. Instead, when a resistor of 5  $\Omega$  is connected to the same electric cell in series, the current increases by 0.4 A. The internal resistance of the cell is

(d) 3.5 Ω

- 1.5 Ω (a) (b) 2 Ω
- (c)  $2.5 \Omega$
- 63. The internal resistance of a cell is the resistance of


[BHU 1999, 2000; AIIMS 2001]


- (a) Electrodes of the cell
- (b) Vessel of the cell
- Electrolyte used in the cell (c)
- (d) Material used in the cell




[KCET (Med.) 2001]

(a)  $54 \times 10^{-3}$  / (b)  $54 \times 10^{-6}$  / (c)  $54 \times 10^{-9} J$ (d)  $54 \times 10^{-12}$  /





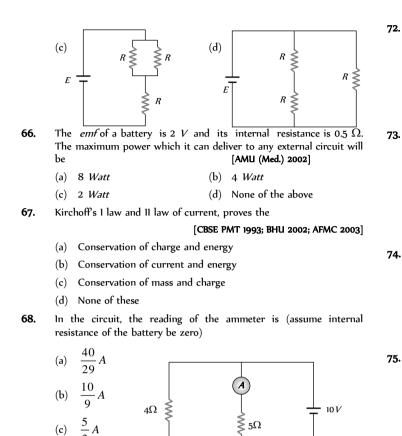


(d) Magnetic field

(c) Electric field

(a) 0.4 A 40 Ω (b) -0.4 A᠕᠕᠕ 0.8 A (c) 40 V  $40 \Omega$ (d) – 0.8 A

The internal resistance of a cell of e.m.f. 12 V is  $5\times10^{-2}\,\Omega$  . It is 57. connected across an unknown resistance. Voltage across the cell, when a current of 60 A is drawn from it, is


**111** 

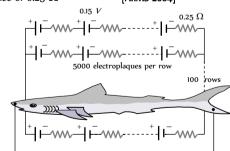
[CBSE PMT 2000]

R

58.

61.




(d) 2 A

**69.** In the above question, if the internal resistance of the battery is 1 *ohm*, then what is the reading of ammeter

| (a) 5/3 A (b | o) 40 | )/29 A |
|--------------|-------|--------|
|--------------|-------|--------|

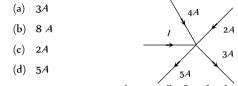
(c) 10/9 A (d) 1 A

**70.** Eels are able to generate current with biological cells called electroplaques. The electroplaques in an eel are arranged in 100 rows, each row stretching horizontally along the body of the fish containing 5000 electroplaques. The arrangement is suggestively shown below. Each electroplaques has an emf of 0.15 V and internal resistance of 0.25  $\Omega$  [AIIMS 2004]



The water surrounding the eet completes a circuit between the head and its tail. If the water surrounding it has a resistance of 500  $\Omega$ , the current an eel can produce in water is about

[AFMC 2004]


**71.** Current provided by a battery is maximum when

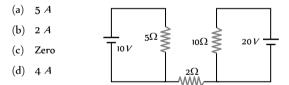
(a) Internal resistance equal to external resistance

(b) Internal resistance is greater than external resistance

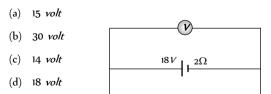
- (c) Internal resistance is less than external resistance
- (d) None of these
- 72. A battery is charged at a potential of 15 V for 8 hours when the current flowing is 10 A. The battery on discharge supplies a current of 5 A for 15 hours. The mean terminal voltage during discharge is 14 V. The "Watt-hour" efficiency of the battery is
  - (a) 82.5% (b) 80 %
  - (c) 90% (d) 87.5%
- **73.** In the given current distribution what is the value of *I*

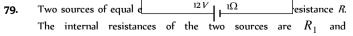
[Orissa PMT 2004]




A capacitor is connected to a cell of emf E having some internal resistance r. The potential difference across the

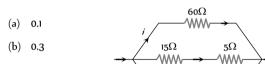
[CPMT 2004; MP PMT 2005]


- (a) Cell is < E (b) Cell is E
- (c) Capacitor is > E (d) Capacitor is < E
- **75.** When the resistance of 9  $\Omega$  is connected at the ends of a battery, its potential difference decreases from 40 *volt* to 30 *volt*. The internal resistance of the battery is **[DPMT 2003]**


| (a) | 6 Ω | (b) | 3Ω   |
|-----|-----|-----|------|
| (c) | 9 Ω | (d) | 15 Ω |

- 76. The maximum power drawn out of the cell from a source is given by (where *r* is internal resistance) [DCE 2002]
  - (a)  $E^2/2r$  (b)  $E^2/4r$
  - (c)  $E^2 / r$  (d)  $E^2 / 3r$
- 77. Find out the value of current through  $2\Omega$  resistance for the given circuit [IIT-JEE (Screening) 2005]




**78.** Two batteries, one of emf 18 *volts* and internal resistance  $2\Omega$  and the other of emf 12 *volt* and internal resistance  $1\Omega$ , are connected as shown. The voltmeter V will record a reading of





 $R_2(R_2 > R_1)$ . If the potential difference across the source having internal resistance  $R_2$  is zero, then

- (a)  $R = R_1 R_2 / (R_1 + R_2)$
- $R = R_1 R_2 / (R_2 R_1)$ (b)
- $R = R_2 \times (R_1 + R_2)/(R_2 R_1)$ (c)
- (d)  $R = R_2 R_1$
- An energy source will supply a constant current into the load if its 80. internal resistance is [AIEEE 2005]
  - (a) Zero
  - (b) Non-zero but less than the resistance of the load
  - Equal to the resistance of the load (c)
  - (d) Very large as compared to the load resistance
- The magnitude of *i* in ampere unit is [KCET 2005] 81.



14

- (c) 0.6
- (d) None of these
- To draw maximum current from a combination of cells, how should 82. [AFMC 2005] the cells be grouped

**^** 

1A

- (a) Series
- (b) Parallel
- (c) Mixed
- (d) Depends upon the relative values of external and internal resistance
- 83. The figure shows a network of currents. The magnitude of currents is shown here. The current I will be [BCECE 2005]

10 A

- (a) 3 A
- (b) 9 A
- (c) 13 A
- (d) 19 A
- The *n* rows each containing *m* cells in series are joined in parallel. 84. Maximum current is taken from this combination across an external resistance of  $3\Omega$  resistance. If the total number of cells used are 24 and internal resistance of each cell is 0.5  $\Omega$  then

6 /

- (a) m = 8, n = 3(b) m = 6, n = 4
- (d) m = 2, n = 12(c) m = 12, n = 2
- 85. A cell of constant e.m.f. first connected to a resistance  $R_1$  and then connected to a resistance  $R_2$ . If power delivered in both cases is then the internal resistance of the cell is

(a) 
$$\sqrt{R_1 R_2}$$
 (b)  $\sqrt{\frac{R_1}{R_2}}$ 

$$\frac{R_1 - R_2}{2} \qquad \qquad (d) \quad \frac{R_1 + R_2}{2}$$

**Different Measuring Instruments** 

- In meter bridge or Wheatstone bridge for measurement of 1. resistance, the known and the unknown resistances are interchanged. The error so removed is
  - (a) End correction
  - (b) Index error

(c)

[AIEEE 2005]

- Due to temperature effect (c)
- (d) Random error

A galvanometer can be converted into an ammeter by connecting

[MP PMT 1987, 93; CPMT 1973, 75, 96, 2000;

[MNR 1988; MP PET 1995]

- MP PET 1994; AFMC 1993, 95; RPET 2000; DCE 2000]
- (a) Low resistance in series
- (b) High resistance in parallel
- (c) Low resistance in parallel
- (d) High resistance in series

A cell of internal resistance  $1.5\,\Omega$  and of e.m.f. 1.5 volt balances 500 cm on a potentiometer wire. If a wire of  $15\,\Omega$  is connected between the balance point and the cell, then the balance point will

- shift [MP PMT 1985]
- (a) To zero (b) By 500 cm
- (c) By 750 cm (d) None of the above

 $10^{-3} amp$  is flowing through a resistance of  $1000\,\Omega$ . To measure the correct potential difference, the voltmeter is to be used of which the resistance should be [MP PMT 1985]

- (a) 0 Ω (b) 500 Ω
- $1000 \Omega$ (d) >>  $1000 \Omega$ (c)
- A galvanometer of  $100\,\Omega\,$  resistance gives full scale deflection when 10 mA of current is passed. To convert it into 10 A range ammeter, the resistance of the shunt required will be
  - (a)  $-10 \Omega$ (b)  $1\Omega$
- (c)  $0.1 \Omega$ (d)  $0.01\Omega$
- $50\,\Omega$  and  $100\,\Omega$  resistors are connected in series. This connection is connected with a battery of 2.4 volts. When a voltmeter of  $100\,\Omega$  resistance is connected across  $100\,\Omega$  resistor, then the reading of the voltmeter will be

[MP PMT 1985]

- (a) 1.6 V (b) 1.0 V (c) 1.2 V (d) 2.0 V
- A 2 volt battery a  $15 \Omega$  resistor and a potentiometer of 100 cm length, all are connected in series. If the resistance of potentiometer wire is  $5\,\Omega$ , then the potential gradient of the potentiometer wire
- is [AllMS 1982] 0.005 V/cm (b) 0.05 V/cm (a)
- (d) 0.2 *V/cm* (c) 0.02 V/cm
- An ammeter gives full scale deflection when current of 1.0 A is passed in it. To convert it into 10 A range ammeter, the ratio of its resistance and the shunt resistance will be
  - (b) 1:10

[MP PMT 1985]

- (a) 1:9

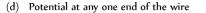
4.

2.

3.

1*A* 

- 5.


6.

7.

8.

[Orissa JEE 2005]

|            | (c) 1:11                                               | (d) 9:1                                                                                   | 18.        | The tangent galvanometer                                         | r, when connected in series with a stand                                           |
|------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|
|            | By ammeter, which of the                               | following can be measured                                                                 |            | resistance can be used as                                        | [MP PET 1994]                                                                      |
|            |                                                        | [MP PET 1981; DPMT 2001]                                                                  |            | (a) An ammeter                                                   |                                                                                    |
|            | (a) Electric potential                                 | (b) Potential difference                                                                  |            | <ul><li>(b) A voltmeter</li><li>(c) A wattmeter</li></ul>        |                                                                                    |
|            | (c) Current                                            | (d) Resistance                                                                            |            | <ul><li>(c) A wattmeter</li><li>(d) Both an ammeter an</li></ul> | id a voltmeter                                                                     |
| •          | The resistance of 1 A amm                              | Heter is $0.018\Omega$ . To convert it into 10 A                                          | 19.        |                                                                  | P = 9  ohm, Q = 11  ohm, R = 4  ohm                                                |
|            | ammeter, the shunt resista                             | nce required will be<br>[MP PET 1982]                                                     | 19.        | S = 6 ohm. How much                                              | resistance must be put in parallel to                                              |
|            | (a) $0.18\Omega$                                       | (b) $0.0018\Omega$                                                                        |            | resistance $S$ to balance                                        | (DPMT 19                                                                           |
|            | (c) $0.002\Omega$                                      | (d) 0.12 Ω                                                                                |            | (a) 24 <i>ohm</i>                                                | (h) $44$ $hm$                                                                      |
|            | For measurement of poten<br>in comparison to voltmeter | ntial difference, potentiometer is preferred<br>r because                                 |            | <ul><li>(a) 24 ohm</li><li>(c) 26.4 ohm</li></ul>                | (b) $\frac{44}{9} ohm$<br>(d) 18.7 ohm                                             |
|            |                                                        | [MP PET 1983]                                                                             | 20.        | A Daniel cell is balanced                                        | on 125 cm length of a potentiometer w                                              |
|            | (a) Potentiometer is more                              | e sensitive than voltmeter                                                                |            |                                                                  | ircuited by a resistance 2 <i>ohm</i> and                                          |
|            | (b) The resistance of pote                             | entiometer is less than voltmeter                                                         |            | balance is obtained at 100<br>cell is                            | 0 <i>cm</i> . The internal resistance of the Dar<br>[ <b>UPSEAT 2002</b> ]         |
|            | (c) Potentiometer is chea                              | per than voltmeter                                                                        |            | (a) 0.5 <i>ohm</i>                                               | (b) 1.5 <i>ohm</i>                                                                 |
|            | (d) Potentiometer does no                              | ot take current from the circuit                                                          |            | (c) 1.25 <i>ohm</i>                                              | (d) 4/5 <i>ohm</i>                                                                 |
|            | In order to pass 10% o                                 | f main current through a moving coil                                                      | 21.        | Sensitivity of potentiomet                                       | er can be increased by                                                             |
|            |                                                        | he resistance of the required shunt is [MP F                                              | ET 1990, 9 | 99; MP PMT 1994;                                                 | [MP PET 19                                                                         |
|            |                                                        | RPET 2001; KCET 2003, 05]                                                                 |            | (a) Increasing the e.m.f.                                        |                                                                                    |
|            | (a) $9.9\Omega$                                        | (b) 10 Ω                                                                                  |            |                                                                  | n of the potentiometer wire                                                        |
|            | (c) $11\Omega$                                         |                                                                                           |            |                                                                  | h of the potentiometer wire                                                        |
|            |                                                        | (d) $9\Omega$                                                                             | 22.        |                                                                  | eal device of measuring potential differe                                          |
| •          |                                                        | istance can read 5 $mA$ . If it is to be used the resistance is to be connected in series |            | because                                                          | an device of measuring potential amere                                             |
|            | ·····, ·····                                           | [MP PET 1991; MP PMT 1996; MP PMT 2000]                                                   |            | (a) It uses a sensitive ga                                       | lvanometer                                                                         |
|            | (a) $19.9995\Omega$                                    | (b) 199.995Ω                                                                              |            |                                                                  | he potential difference it measures                                                |
|            | (c) 1999.95 Ω                                          | (d) 19995Ω                                                                                |            | (c) It is an elaborate arr                                       | e                                                                                  |
| <b>.</b>   |                                                        | long the length of a uniform wire is                                                      | 23.        |                                                                  | ence heat developed is quickly radiated<br>onnected to the terminals of a three me |
|            |                                                        | C are the two points at $30  cm$ and                                                      | 23.        |                                                                  | kness and resistance of the order of 100                                           |
|            | 60 cm point on a meter                                 | scale fitted along the wire. The potential                                                |            | The difference of potentia                                       | al between two points separated by 50 G                                            |
|            | difference between $B$ and                             |                                                                                           |            | on the wire will be                                              |                                                                                    |
|            | (a) 3 volt                                             | (b) $0.4 volt$                                                                            |            | (a) 1 V                                                          | [CPMT 1984; CBSE PMT 20<br>(b) 1.5 V                                               |
|            |                                                        | (d) $4 volt$                                                                              |            | (c) $2 V$                                                        | (d)  3  V                                                                          |
|            | ()                                                     |                                                                                           | 24.        |                                                                  | <i>m</i> resistance gives full scale deflection w                                  |
| •          |                                                        | full scale deflection in a galvanometer of                                                |            | •                                                                | It is to be converted into an ammeter                                              |
|            | $2\Omega$ resistance. The resist                       | tance connected with the galvanometer to                                                  |            | ę .                                                              | rent. The value of shunt resistance requi<br>[ <b>MP PET 1984</b> ]                |
|            | convert it into a voltmeter                            | to measure $5 V$ is                                                                       | [          | will be<br>MNR 1994; UPSEAT 2000]<br>10                          |                                                                                    |
|            | (a) $98\Omega$                                         | (b) $52\Omega$                                                                            |            | (a) $\frac{10}{999}$ ohm                                         | (b) 0.1 <i>ohm</i>                                                                 |
|            | (c) $50\Omega$                                         | (d) $48 \Omega$                                                                           |            | (c) 0.5 <i>ohm</i>                                               | (d) 1.0 <i>ohm</i>                                                                 |
| <b>5</b> . | When a $12\Omega$ resisto                              | r is connected with a moving coil                                                         | 25.        | •                                                                | for the comparison of e.m.f. of two c                                              |
|            |                                                        | flection reduces from 50 divisions to 10                                                  |            |                                                                  | $E_1$ the no deflection point is obtained                                          |
|            | divisions. The resistance of                           | the galvanometer is                                                                       |            |                                                                  | no deflection point is obtained at 30 <i>c</i>                                     |
|            |                                                        | [CPMT 2002; DPMT 2003]                                                                    |            | The ratio of their e.m.f.'s                                      | will be<br>[MP PET 19                                                              |
|            | (a) $24 \Omega$                                        | (b) $36\Omega$                                                                            |            | (a) 2/3                                                          | (b) 1/2                                                                            |
|            | (c) $48 \Omega$                                        | (d) $60 \Omega$                                                                           |            | (c) 1                                                            | (d) 2                                                                              |
|            | A galvanometer can be use                              | d as a voltmeter by connecting a                                                          | 26.        | Potential gradient is defin                                      |                                                                                    |
|            | · · · · · · · · · · · · · · · · · · ·                  | MC 1993; MP PMT 1993, 95; CBSE PMT 2004]                                                  |            |                                                                  | unit length of the wire                                                            |
|            | (a) High resistance in ser                             |                                                                                           |            |                                                                  | unit area of the wire<br>veen two ends of the wire                                 |
|            | (c) High resistance in para                            | allel (d) Low resistance in parallel                                                      |            | (c) Fall of potential betw                                       | The will the second of the will                                                    |



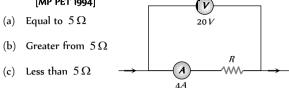
- In an experiment of meter bridge, a null point is obtained at the 27. centre of the bridge wire. When a resistance of 10 ohm is connected in one gap, the value of resistance in other gap is
  - (a) 10Ω (b) 5Ω
  - $\frac{1}{5}\Omega$ (d) 500Ω (c)
- 28. If the length of potentiometer wire is increased, then the length of the previously obtained balance point will
  - (a) Increase (b) Decrease
  - (c) Remain unchanged (d) Become two times
- 29. In potentiometer a balance point is obtained, when
  - (a) The e.m.f. of the battery becomes equal to the e.m.f. of the experimental cell
  - The p.d. of the wire between the +*ve* end (b) to jockey becomes equal to the e.m.f. of the experimental cell
  - (c) The p.d. of the wire between +ve point and jockey becomes equal to the e.m.f. of the battery
  - The p.d. across the potentiometer wire becomes equal to the (d) e.m.f. of the battery
- 30. In the experiment of potentiometer, at balance, there is no current in the
  - (a) Main circuit
  - (b) Galvanometer circuit
  - (c) Potentiometer circuit
  - Both main and galvanometer circuits (d)
- If in the experiment of Wheatstone's bridge, the positions of cells 31. and galvanometer are interchanged, then balance points will
  - (a) Change
  - (b) Remain unchanged
  - Depend on the internal resistance of cell and resistance of (c) galvanometer
  - (d) None of these
- The resistance of a galvanometer is 90 ohms. If only 10 percent of 32. the main current may flow through the galvanometer, in which way and of what value, a resistor is to be used
  - (a) 10 ohms in series (b) 10 ohms in parallel
  - (c) 810 ohms in series (d) 810 ohms in parallel
- 33. Two cells when connected in series are balanced on 8m on a potentiometer. If the cells are connected with polarities of one of the cell is reversed, they balance on 2m. The ratio of e.m.f.'s of the two cells is

| (a) | 3:5 | (b) | 5:3 |
|-----|-----|-----|-----|
| (c) | 3:4 | (d) | 4:3 |

34 A voltmeter has a resistance of *G* ohms and range *V* volts. The value of resistance used in series to convert it into a voltmeter of range nV volts is

[MP PMT 1999; MP PET 2002; DPMT 2004; MH CET 2004]

(b) (n-1)G(a) *nG* 


(c) 
$$\frac{G}{n}$$
 (d)  $\frac{G}{(n-1)}$ 

Which of the following statement is wrong [MP PET 1994] 35. (a) Voltmeter should have high resistance

- (b) Ammeter should have low resistance
- (c) Ammeter is placed in parallel across the conductor in a circuit
- (d) Voltmeter is placed in parallel across the conductor in a circuit

In the diagram shown, the reading of voltmeter is 20 V and that of 36. ammeter is 4 A. The value of R should be (Consider given ammeter and voltmeter are not ideal) [RPMT 1997]

[MP PET 1994]



- (d) Greater or less than  $5\,\Omega$  depends on the material of R
- 37. A moving coil galvanometer has a resistance of  $50\Omega$  and gives full scale deflection for 10 mA. How could it be converted into an ammeter with a full scale deflection for 1A

[MP PMT 1996]

- $50/99\Omega$  in series  $50/99\Omega$  in parallel (a) (b)
- (c)  $0.01\Omega$  in series (d)  $0.01\Omega$  in parallel
- The current flowing through a coil of resistance 900 ohms is to be 38. reduced by 90%. What value of shunt should be connected across the coil [Roorkee 1992]

| (a) 90 Ω | (b) | 100Ω |
|----------|-----|------|
|----------|-----|------|

- (c) 9Ω (d) 10Ω
- 39. A galvanometer of resistance  $25\Omega$  gives full scale deflection for a current of 10 milliampere, is to be changed into a voltmeter of range 100 V by connecting a resistance of 'R' in series with galvanometer. The value of resistance R in  $\Omega$  is

[MP PET 1994]

- (c) 975 (d) 9975 In a potentiometer circuit there is a cell of e.m.f. 2 volt, a resistance
- 40. of 5 ohm and a wire of uniform thickness of length 1000 cm and resistance 15 ohm. The potential gradient in the wire is

(a) 
$$\frac{1}{5000} V/cm$$
  
(b)  $\frac{3}{2000} V/cm$   
(c)  $\frac{3}{5000} V/cm$   
(d)  $\frac{1}{1000} V/cm$ 

41. The resistance of a galvanometer is 25 *ohm* and it requires  $50 \,\mu A$ for full deflection. The value of the shunt resistance required to convert it into an ammeter of 5 amp is

#### [MP PMT 1994; BHU 1997]

[MP PMT 1994]

(a)  $2.5 \times 10^{-4} ohm$ (b)  $1.25 \times 10^{-3} ohm$ 

(c) 0.05 ohm

42.

43.

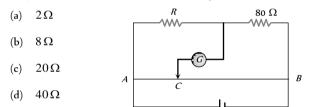
- Which is a *wrong* statement
  - (a) The Wheatstone bridge is most sensitive when all the four resistances are of the same order

(d) 2.5 ohm

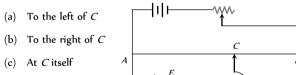
- (b) In a balanced Wheatstone bridge, interchanging the positions of galvanometer and cell affects the balance of the bridge
- Kirchhoff's first law (for currents meeting at a junction in an (c) electric circuit) expresses the conservation of charge
- The rheostat can be used as a potential divider (d)
- A voltmeter having a resistance of 998 ohms is connected to a cell of e.m.f. 2 volt and internal resistance 2 ohm. The error in the measurement of e.m.f. will be [MP PMT 1994]
  - (b)  $2 \times 10^{-3} volt$ (a)  $4 \times 10^{-1}$  volt
  - (d)  $2 \times 10^{-1} volt$  $4 \times 10^{-3}$  volt

#### UNIVERSAL

#### **1076 Current Electricity**


- 44. For comparing the e.m.f.'s of two cells with a potentiometer, a standard cell is used to develop a potential gradient along the wires. Which of the following possibilities would make the experiment unsuccessful [MP PMT 1994]
  - (a) The e.m.f. of the standard cell is larger than the E e.m.f.'s of the two cells
  - $(b) \;\;$  The diameter of the wires is the same and uniform throughout
  - (c) The number of wires is ten
  - $(d) \quad \mbox{The e.m.f. of the standard cell is smaller than the e.m.f.'s of the two cells }$
- **45.** Which of the following is correct [BHU 1995]
  - (a) Ammeter has low resistance and is connected in series
  - $(b) \quad \text{Ammeter has low resistance and is connected in parallel}$
  - $(c) \quad \text{Voltmeter has low resistance and is connected in parallel}$
  - $(d) \quad \text{None of the above} \\$
- **46.** An ammeter with internal resistance  $90\Omega$  reads 1.85 *A* when connected in a circuit containing a battery and two resistors  $700\Omega$  and  $410\Omega$  in series. Actual current will be

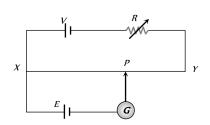
#### [Roorkee 1995]


53.

55.

- (a) 1.85 *A* (b) Greater than 1.85 *A*
- (c) Less than 1.85 *A* (d) None of these
- AB is a wire of uniform resistance. The galvanometer G shows no current when the length AC = 20 cm and CB = 80 cm. The resistance R is equal to [MP PMT 1995; RPET 2001]



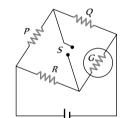

**48.** The circuit shown here is used to compare the e.m.f. of two cells  $E_1$  and  $E_2(E_1 > E_2)$ . The null point is at C when the galvanometer is connected to  $E_1$ . When the galvanometer is connected to  $E_2$ , the null point will be [MP PMT 1995]



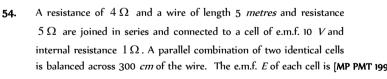
- (d) Nowhere on AB
- **49.** In an experiment to measure the fitternal resistance of a cell by potentiometer, it is found that the balance point is at a length of 2m when the cell is shunted by a  $5\Omega$  resistance; and is at a length of 3m when the cell is shunted by a  $10\Omega$  resistance. The internal resistance of the cell is, then

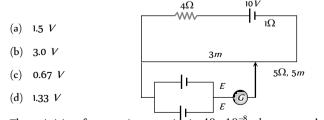
[Haryana CEE 1996] (a) 1.5 Ω (b) 10 Ω

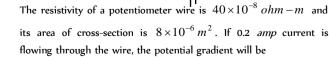
- (c)  $15\Omega$  (d)  $1\Omega$
- **50.** A potentiometer circuit shown in the figure is set up to measure e.m.f. of a cell *E*. As the point *P* moves from *X* to *Y* the galvanometer *G* shows deflection always in one direction, but the deflection decreases continuously until *Y* is reached. In order to obtain balance point between *X* and *Y* it is necessary to




- (a) Decreases the resistance R
- (b) Increase the resistance *R*
- (c) Reverse the terminals of battery V
- (d) Reverse the terminals of cell *E*
- **51.** In the Wheatstone's bridge (shown in figure) X = Y and A > B. The direction of the current between *ab* will be


B


- (a) From a to b
- (b) From *b* to *a*
- (c) From *b* to *a* through *c*
- (d) From a to b through c
- **52.** The figure shows a circuit diagram bf a 'Wheatstone ridge' to measure the resistance *G* of the galvanometer. The relation


 $\frac{P}{O} = \frac{R}{G}$  will be satisfied only when



- (a) The galvanometer shows a deflection when switch S is closed
- (b) The galvanometer shows a deflection when switch S is open
- (c) The galvanometer shows no change in deflection whether S is open or closed
- (d) The galvanometer shows no deflection
- The resistance of a galvanometer is 50 *ohms* and the current required to give full scale deflection is  $100 \ \mu$ A. In order to convert it into an ammeter, reading upto 10*A*, it is necessary to put a resistance of [MP PMT 1997; AlIMS 1999]
  - (a)  $5 \times 10^{-3} \Omega$  in parallel (b)  $5 \times 10^{-4} \Omega$  in parallel
- (c)  $10^5 \Omega$  in series (d)  $99,950 \Omega$  in series







| (a)                 | $10^{-2}$ volt / m                                               | (b)                    | $10^{-1} volt / m$                                    |
|---------------------|------------------------------------------------------------------|------------------------|-------------------------------------------------------|
| (c)                 | $3.2 \times 10^{-2}  volt / m$                                   | (d)                    | 1 volt / m                                            |
|                     | nly 2% of the main curr<br>anometer of resistance <i>G</i> , the |                        | is to be passed through a resistance of shunt will be |
|                     |                                                                  | (b)                    | $\frac{G}{49}$                                        |
| (c)                 | 50 G                                                             | (d)                    | 49 G                                                  |
| The                 | resistance of an ideal voltmet                                   | er is                  |                                                       |
|                     | [EAMCET (Med.) 1                                                 | 995; I                 | MP PMT/PET 1998; Pb. PMT 1999;<br>CPMT 2000]          |
|                     |                                                                  |                        | CF/WT 2000 J                                          |
| (a)                 | Zero                                                             | (b)                    | Very low                                              |
| . ,                 | Zero<br>Very large                                               |                        | •                                                     |
| (c)                 | Very large                                                       | (d)                    | Very low                                              |
| (c)<br>A 10<br>high | Very large<br>0 V voltmeter of internal r                        | (d)<br>esista<br>a 110 | Very low<br>Infinite                                  |

- (d)  $440 k\Omega$ (c)  $420 k\Omega$
- 59. Constantan wire is used in making standard resistances because its
  - (a) Specific resistance is low
  - (b) Density is high

56.

57.

58.

- (c) Temperature coefficient of resistance is negligible
- (d) Melting point is high
- The net resistance of a voltmeter should be large to ensure that 60.
  - (a) It does not get overheated
  - (b) It does not draw excessive current
  - (c) It can measure large potential difference
  - (d) It does not appreciably change the potential difference to be measured
- A galvanometer has resistance of  $7 \Omega$  and gives a full scale 61. deflection for a current of 1.0 A. How will you convert it into a voltmeter of range 10 V[MP PMT 1999]
  - $3\,\Omega$  in series (b)  $3\Omega$  in parallel (a)
  - $17 \Omega$  in series (d)  $30 \Omega$  in series (c)
- A potentiometer consists of a wire of length 4 m and resistance 62.  $10\,\Omega$ . It is connected to a cell of e.m.f. 2 V. The potential difference per unit length of the wire will be

[CBSE PMT 1999; AFMC 2001]

| (a) 0.5 $V/m$ | (b) $2V/m$ |
|---------------|------------|
|---------------|------------|

- (c) 5 V / m(d) 10 V/m
- 63. In a meter bridge, the balancing length from the left end (standard resistance of one ohm is in the right gap) is found to be 20 cm. The value of the unknown resistance is

[CBSE PMT 1999; Pb PMT 2004]

- (a) 0.8 Ω (b)  $0.5 \Omega$
- (d)  $0.25 \Omega$ (c)  $0.4 \Omega$
- In the circuit shown  $P \neq R$ , the reading of the galvanometer is 64. same with switch S open or closed. Then

[IIT-JEE (Screening) 1999]

(a)  $I_R = I_G$ 

(b)  $I_P = I_G$ 

- I [MP PMT/PET 1998] (c)
- (d)  $I_O = I_R$

65. In the following Wheatstone bridge P/Q = R/S. If key K is closed, then the galvanometer will show deflection

44

ĸ 34

my.

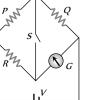
(b)  $2.5 \times 10^{-4} V/cm$ 

0

(a) In left side (b) In right side

- (c) No deflection
- (d) In either side
- A galvanometer having a resistance of 8 ohm is shunted by a wire of 66. resistance 2 ohm. If the total current is 1 amp, the part of it passing through the shunt will be

[CBSE PMT 1998]


- (b) 0.8 amp (a) 0.2 [MP PET 1999] (c) 0.2 amp (d) 0.5 amp
- 67. A potentiometer wire has length 10 m and resistance  $20\Omega$ . A 2. 5 V battery of negligible internal resistance is connected across the wire with an  $80\,\Omega$  series resistance. The potential gradient on the wire will be [KCET 1994]
  - [MP PMT 1999] (a)  $5 \times 10^{-5} V/mm$
  - (c)  $0.62 \times 10^{-4} V/mm$ (d)  $1 \times 10^{-5} V / mm$
- An ammeter whose resistance is  $180\,\Omega$  gives full scale deflection 68. when current is 2 mA. The shunt required to convert it into an ammeter reading 20 mA (in ohms) is

|     |     |     | [EAMCET (Engg.) 1995] |
|-----|-----|-----|-----------------------|
| (a) | 18  | (b) | 20                    |
| (c) | 0.1 | (d) | 10                    |

69. A galvanometer whose resistance is  $120\Omega$  gives full scale deflection with a current of 0.05 A so that it can read a maximum current of 10 A. A shunt resistance is added in parallel with it. The resistance of the ammeter so formed is

[Bihar MEE 1995]

- (a)  $0.06 \Omega$ (b) 0.006 Ω
- (c)  $0.6\,\Omega$ (d)  $6\Omega s$
- In a potentiometer experiment, the galvanometer shows no 70. deflection when a cell is connected across 60 cm of the potentiometer wire. If the cell is shunted by a resistance of  $6\,\Omega$ , the balance is obtained across 50 cm of the wire. The internal resistance of the cell is [SCRA 1994]
  - (a)  $0.5\,\Omega$ (b) 0.6 Ω
  - (c)  $1.2 \Omega$ (d) 1.5 Ω
- 71. A voltmeter of resistance  $1000\,\Omega\,$  gives full scale deflection when a current of 100 mA flow through it. The shunt resistance required across it to enable it to be used as an ammeter reading 1 A at full scale deflection is [SCRA 1994]
  - $10000 \Omega$ (b) 9000 Ω (a)
  - $222\Omega$ (d) 111Ω (c)



[CPMT 1999]





- The resistance of 10 metre long potentiometer wire is 10hm/meter. A 72 cell of e.m.f. 2.2 volts and a high resistance box are connected in series to this wire. The value of resistance taken from resistance box for getting potential gradient of 2.2 millivolt/metre will be[RPET 1997]
  - $790 \Omega$ (b) 810Ω (a)
  - 990Ω (d) 1000 Ω (c)
- We have a galvanometer of resistance  $25\,\Omega$ . It is shunted by a 73.  $2.5\,\Omega$  wire. The part of total current that flows through the galvanometer is given as

[AFMC 1998; MH CET 1999; Pb. PMT 2002]

80 O

(V

[CPMT 1997, SCRA 1994]

| <i>(</i> ) | Ι                 | 1    |     | Ι                | 1               |
|------------|-------------------|------|-----|------------------|-----------------|
| (a)        | $\frac{I}{I_0} =$ | = 11 | (b) | $\overline{I_0}$ | $=\frac{1}{10}$ |

- $\frac{I}{I_0} = \frac{4}{11}$ (c)  $\frac{I}{I_0} = \frac{3}{11}$ (d)
- In the adjoining circuit, the e.m.f. of the cell is 2 volt and the 74. internal resistance is negligible. The resistance of the voltmeter is 80 ohm. The reading of the voltmeter will be

[CPMT 1991] 2V(a) 0.80 volt

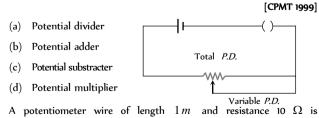
- (b)
- 1.60 volt (c) 1.33 *volt*
- (d) 2.00 volt

(a)

79.

If the resistivity of a potentiometer wire be  $\rho_{\text{Nand area of cross-}}^{80}$  and area of cross-75. section be A, then what will be potential gradient along the wire

(a) 
$$\frac{I\rho}{A}$$
 (b)  $\frac{I}{A\rho}$ 


(c) 
$$\frac{IA}{\rho}$$
 (d)  $IA\rho$ 

A voltmeter has resistance of 2000 ohms and it can measure upto 76. 2 V. If we want to increase its range to 10 V, then the required resistance in series will be

> (b) 4000 Ω 2000 Ω

- 6000Ω (d) 8000 Ω (c)
- For a cell of e.m.f. 2V, a balance is obtained for 50 cm of the 77. potentiometer wire. If the cell is shunted by a  $2\Omega$  resistor and the balance is obtained across 40 cm of the wire, then the internal resistance of the cell is [SCRA 1998]
  - 0.25 Ω  $0.50\Omega$ (a) (b)
  - $0.80\,\Omega$ (d)  $1.00 \Omega$ (c)

The arrangement as shown in figure is called as 78.



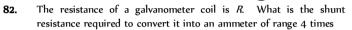
connected in series with a cell of  $emf_2V$  with internal resistance 1  $\Omega$ and a resistance box including a resistance R. If potential difference between the ends of the wire is 1 *mV*, the value of *R* is [KCET 1999]

| (a) | 20000 Ω | (b) | 19989 Ω |
|-----|---------|-----|---------|
| (c) | 10000 Ω | (d) | 9989 Ω  |

80 In a balanced Wheatstone's network, the resistances in the arms Q and *S* are interchanged. As a result of this

[KCET 1999]

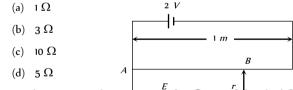
[]IPMER 1999; MP PMT 2004]


R

V

- (a) Network is not balanced
- (b) Network is still balanced
- (c)
- Galvanometer shows zero deflection
- Galvanometer and the cell must be interchanged to balance (d)
- The ammeter A reads 2 A and the voltmeter V reads 20 V. the value of resistance R is (Assuming finite resistance's of ammeter and

81.


- voltmeter)
- (a) Exactly 10 ohm
- (b) Less than 10 ohm
- (c) More than 10 ohm
- (d) We cannot definitely say

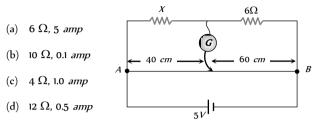


(a) 
$$\frac{R}{5}$$
 (b)  $\frac{R}{4}$   
(c)  $\frac{R}{3[\text{RPET 1996}]}$  (d)  $4 R$ 

83. If an ammeter is connected in parallel to a circuit, it is likely to be damaged due to excess [BHU 2000; BCECE 2004]

- (a) Current (b) Voltage
- (d) All of these (c) Resistance
- In the given figure, battery E is balanced on 55 cm length of 84. potentiometer wire but when a resistance of 10  $\Omega$  is connected in parallel with the battery then it balances on 50 cm length of the potentiometer wire then internal resistance *r* of the battery is




- A galvanometer with a resistance  $\int \frac{12 \Omega}{12 \Omega} gives full scale deflection$ 85. when a current of 3 mA is passed. It is required to convert it into a voltmeter which can read up to 18 V. the resistance to be connected is [Pb. PMT 2000]
  - (a) 6000 Ω (b) 5988 Ω
  - 4988  $\Omega$ (c) 5000 Ω (d)
- 86. The resistance of an ideal ammeter is [KCET 2000]
  - (a) Infinite Very high (b)
  - (c) Small (d) Zero
- 87. A galvanometer of 25  $\Omega$  resistance can read a maximum current of 6 mA. It can be used as a voltmeter to measure a maximum of 6 Vby connecting a resistance to the galvanometer. Identify the correct [EAMCET (Med.) 2000] choice in the given answers
  - (a) 1025  $\Omega$  in series (b) 1025  $\Omega$  in parallel
  - (c) 975  $\Omega$  in series (d) 975  $\Omega$  in parallel

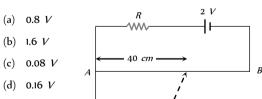
(d)

G

19

- **88.** A galvanometer has a resistance of 25 *ohm* and a maximum of 0.01 *A* current can be passed through it. In order to change it into an ammeter of range 10 *A*, the shunt resistance required is
  - (a) 5/999 ohm (b) 10/999 ohm
  - (c) 20/999 ohm (d) 25/999 ohm
- 89. In the circuit shown, a *meter* bridge is in its balanced state. The *meter* bridge wire has a resistance 0.1 *ohm/cm*. The value of unknown resistance X and the current drawn from the battery of negligible resistance is [AMU (Engg.) 2000]




- **90.** A galvanometer has 30 divisions and a sensitivity 16  $\mu A / \text{div.It}$  can be converted into a voltmeter to read 3 V by connecting
  - (a) Resistance nearly 6  $k \Omega$  in series
  - (b)  $6k\Omega$  in parallel
  - (c)  $500\Omega$  in series
  - (d) It cannot be converted
- **91.** Voltmeters *V* and *V* are connected in series across a *D.C.* line. *V* reads 80 *volts* and has a per *volt* resistance of 200 *ohms. V* has a total resistance of 32 *kilo ohms.* The line voltage is

| (a) | 120 <i>volts</i> | (b) | 160 <i>volts</i> |
|-----|------------------|-----|------------------|
| (c) | 220 volts        | (d) | 240 <i>volts</i> |

**92.** A potentiometer having the potential gradient of 2 mV/cm is used to measure the difference of potential across a resistance of 10 *ohm*. If a length of 50 *cm* of the potentiometer wire is required to get the null point, the current passing through the 10 *ohm* resistor is (in mA)

| [AMU (Med.) 2000] |    |     |   | ,   |
|-------------------|----|-----|---|-----|
|                   | 2  | (b) | 1 | (a) |
|                   | 10 | (d) | 5 | (c) |

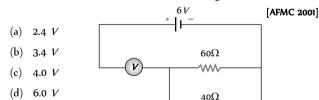
**93.** *AB* is a potentiometer wire of length 100 *cm* and its resistance is 10 *ohms.* It is connected in series with a resistance R = 40 *ohms* and a battery of e.m.f. 2 *V* and negligible internal resistance. If a source of unknown e.m.f. *E* is balanced by 40 *cm* length of the potentiometer wire, the value of *E* is **[MP PET 2001]** 



- **94.** An ammeter gives full deflection when a current of 2 *amp*. flows through it. The resistance of ammeter is 12 *ohms*. If the same ammeter is to be used for measuring a maximum current of 5 *amp*, then the ammeter must be connected with a resistance of
  - (a) 8 *ohms* in series (b) 18 *ohms* in series
  - (c) 8 ohms in parallel (d) 18 ohms in parallel
- 95. In a circuit 5 percent of total current passes through a galvanometer. If resistance of the galvanometer is G then value of the shunt is [MP PET 2001]
  (a) 19 G
  (b) 20 G

(c)  $\frac{G}{20}$ [MP PET 2000]

**96.** A voltmeter having resistance of  $50 \times 10^{\circ}$  ohm is used to measure the voltage in a circuit. To increase the range of measurement 3 times the additional series resistance required is


- (a) 10 *ohm* (b) 150 *k.ohm*
- (c) 900 *k.ohm* (d)  $9 \times 10^{\circ} ohm$
- **97.** In a potentiometer experiment two cells of e.m.f. *E* and *E* are used in series and in conjunction and the balancing length is found to be 58 *cm* of the wire. If the polarity of *E* is reversed, then the

balancing length becomes 29 cm. The ratio  $\frac{E_1}{E_2}$  of the e.m.f. of the two cells is

- (a) 1:1 (b) 2:1 (c) 3:1 (d) 4:1
- 98. A milliammeter of range 10 mA has a coil of resistance 1 Ω. To use it as voltmeter of range 10 volt, the resistance that must be connecter as series 2005, it, will be [KCET 2001]
  - (a) 999  $\Omega$  (b) 99  $\Omega$
  - (c) 1000  $\Omega$  (d) None of these
- **99.** A voltmeter has a range 0-V with a series resistance *R*. With a series resistance 2R, the range is 0-V. The correct relation between V and V is [CPMT 2001]

(a) 
$$V' = 2V$$
  
[UPSEAT 2000]  
(c)  $V' >> 2V$   
(d)  $V' < 2V$ 

100. The measurement of voltmeter in the following circuit is



- 101. A 36  $\Omega$  galvanometer is shunted by resistance of  $4\Omega$ . The percentage of the total current, which passes through the galvanometer is [UPSEAT 2002]
  - (a) 8 %
     (b) 9 %

     (c) 10 %
     (d) 91 %
- **102.** An ammeter and a voltmeter of resistance R are connected in series to an electric cell of negligible internal resistance. Their readings are A and V respectively. If another resistance R is connected in parallel with the voltmeter

#### [EAMCET 2000; KCET 2002]

[Kerala (Engg.) 2001]

- (a) Both A and V will increase
- (b) Both *A* and *V* will decrease
- (c) A will decrease and V will increase
- (d) A will interessed and V will decrease
- **D3.** A wire of length 100 cm is connected to a cell of emf 2 V and negligible internal resistance. The resistance of the wire is 3  $\Omega$ . The additional resistance required to produce a potential drop of 1 *milli volt* per cm is [Kerala PET 2002]
  - (a)  $60 \Omega$  (b)  $47 \Omega$
  - (c) 57  $\Omega$  (d) 35  $\Omega$

- 103.

A galvanometer of resistance 20  $\Omega$  is to be converted into an 104. ammeter of range 1 A. If a current of 1 mA produces full scale deflection, the shunt required for the purpose is

[Kerala PET 2002]

| (a) 0.01 Ω | (b) | 0.05 Ω |  |
|------------|-----|--------|--|
|------------|-----|--------|--|

- (c) 0.02 Ω (d) 0.04 Ω
- 105. There are three voltmeters of the same range but of resistances  $10000\Omega$ ,  $8000\Omega$  and  $4000\Omega$  respectively. The best voltmeter among these is the one whose resistance is

| (a) 10000 $\Omega$ (b) 8000 $\Omega$ | 2 |
|--------------------------------------|---|
|--------------------------------------|---|

- (c) 4000 Ω (d) All are equally good
- If an ammeter is to be used in place of a voltmeter then we must 106. connect with the ammeter a

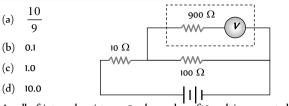
## [AIEEE 2002; AFMC 2002]

- Low resistance in parallel (a) (b) High resistance in parallel
- High resistance in series (c)
- Low resistance in series (d)
- A 10 m long wire of 20 $\Omega$  resistance is connected with a battery of 3 107. volt e.m.f. (negligible internal resistance) and a 10  $\Omega$  resistance is joined to it is series. Potential gradient along wire in volt per meter [MP PMT 2003] is
  - 0.02 (b) 0.3 (a)
  - (c) 0.2 (d) 1.3
- 108. A potentiometer has uniform potential gradient across it. Two cells connected in series (i) to support each other and (ii) to oppose each other are balanced over 6m and 2m respectively on the potentiometer wire. The e.m.f.'s of the cells are in the ratio of

| (a) | 1:2   | (b) | 1:1 |
|-----|-------|-----|-----|
| (c) | 3 : 1 | (d) | 2:1 |

The material of wire of potentiometer is 109.

[MP PMT 2002]


- (b) Steel (a) Copper (c) Manganin (d) Aluminium
- 110. To convert a galvanometer into a voltmeter, one should connect a
  - (a) High resistance in series with galvanometer
  - (b) Low resistance in series with galvanometer
  - High resistance in parallel with galvanometer (c)
  - (d) Low resistance in parallel with galvanometer
- To convert a 800 mV range milli voltmeter of resistance 40  $\Omega$  into a 111. galvanometer of 100 mA range, the resistance to be connected as shunt is [CBSE PMT 2002]

| (b) | 20 Ω |
|-----|------|
|     | (b)  |

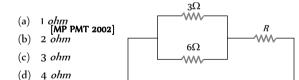
- (c) 30 Ω (d) 40 Ω
- A 100 ohm galvanometer gives full scale deflection at 10 mA. How 112. much shunt is required to read 100 mA

[MP PET 2002] (a) 11.11 ohm (b) 9.9 *ohm* (c) 1.1 ohm (d) 4.4 ohm

113. The potential difference across the 100 $\Omega$  resistance in the following circuit is measured by a voltmeter of 900  $\Omega$  resistance. The percentage error made in reading the potential difference is



- A cell of internal resistance 3 ohm and emf 10 volt is connected to a 114. uniform wire of length 500 cm and resistance 3 ohm. The potential [Kerala PET 2002] gradient in the wire is
  - (a) 30 mV/cm (b) 10 mV/cm
  - (c) 20 mV/cm (d) 4 *mV/cm*
- An ammeter of 100  $\Omega$  resistance gives full deflection for the current 115. of 10<sup>s</sup> amp. Now the shunt resistance required to convert it into ammeter of 1 amp. range, will be


[RPET 2003]

| (a) | $10^{-4}$ $\Omega$ | (b) | $10^{-5} \Omega$ |
|-----|--------------------|-----|------------------|
| (c) | $10^{-3}$ $\Omega$ | (d) | $10^{-1} \Omega$ |

A galvanometer of resistance 36  $\Omega$  is changed into an ammeter by 116. using a shunt of 4  $\Omega$ . The fraction f of total current passing through the galvanometer is [BCECE 2003]

| (a) | $\frac{1}{40}$  | (b) | $\frac{1}{4}$  |
|-----|-----------------|-----|----------------|
| (c) | $\frac{1}{140}$ | (d) | $\frac{1}{10}$ |

If the ammeter in the given circuit reads 2 A, the resistance R is 117.

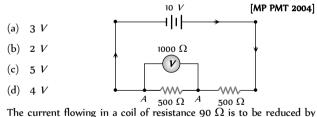


- A 50 ohm galvanometer gets f(A) cale deflection then a current of 118. When it is converted to a 10 A 0.01 A passes through the coil. ammeter, the shunt resistance is
  - [Orissa ]EE 2003] [CBSE PMT 2002]  $0.01 \Omega$ (b) 0.05 Ω (a) (c) 2000 Ω (d) 5000 Ω
- Resistance in the two gaps of a meter bridge are 10 ohm and 30 119. ohm respectively. If the resistances are interchanged the balance point shifts by [Orissa JEE 2003]
  - (a) 33.3 cm (b) 66.67*cm*
  - (c) 25 cm (d) 50 cm
- 120. A potentiometer has uniform potential gradient. The specific resistance of the material of the potentiometer wire is 10° ohmmeter and the current passing through it is 0.1 ampere; cross-section of the wire is  $10^{-}$  m. The potential gradient along the potentiometer [KCET 2003] wire is

(a)  $10^{-4}$  V/m (b)  $10^{-6}$  V/m

(c)  $10^{-2}$  V/m (d)  $10^{-8}$  V/m

- Two resistances of 400  $\Omega$  and 800  $\Omega$  are connected in series with 6 121. *volt* battery of negligible internal resistance. A voltmeter of resistance 10,000  $\Omega$  is used to measure the potential difference across 400  $\Omega_{\rm \cdot}$  . The error in the measurement of potential difference in volts [AMH (Med ) 2003]
  - (a) 0.01 (b) 0.02
  - (c) 0.03 (d) 0.05


- **122.** A galvanometer, having a resistance of 50  $\Omega$  gives a full scale deflection for a current of 0.05 *A*. The length in *meter* of a resistance wire of area of cross-section 2.97× 10° *cm* that can be used to convert the galvanometer into an ammeter which can read a maximum of 5 *A* current is (Specific resistance of the wire = 5 × 10<sup>-7</sup>  $\Omega$ *m*)
  - (a) 9 (b) 6
  - (c) 3 (d) 1.5
- 123. An ammeter reads upto 1 *ampere*. Its internal resistance is 0.81 *ohm*. To increase the range to 10 *A* the value of the required shunt is [AIEEE 2003]
  - (a) 0.09  $\Omega$  (b) 0.03  $\Omega$
  - (c)  $0.3 \Omega$  (d)  $0.9 \Omega$
- **124.** The length of a wire of a potentiometer is 100 *cm*, and the *emf* of its standard cell is *E volt*. It is employed to measure the *e.m.f* of a battery whose internal resistance is 0.5  $\Omega$ . If the balance point is obtained at l = 30 *cm* from the positive end, the e.m.f. of the battery is [AIEEE 2003]
  - (a)  $\frac{30E}{100}$
  - (b)  $\frac{30E}{100.5}$
  - (c)  $\frac{30E}{(100-0.5)}$
  - (d)  $\frac{30(E-0.5i)}{100}$ , where *i* is the current in the potentiometer
- **125.** Resistance of 100 *cm* long potentiometer wire is  $10\Omega$ , it is connected to a battery (2 *volt*) and a resistance *R* in series. A source of 10 *mV* gives null point at 40 *cm* length, then external resistance *R* is

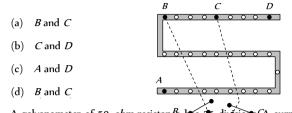
| (a) | 490 Ω | (b) | 790 $\Omega$ |
|-----|-------|-----|--------------|
|-----|-------|-----|--------------|

- (c) 590  $\Omega$  (d) 990  $\Omega$
- **126.** The e.m.f. of a standard cell balances across 150 *cm* length of a wire of potentiometer. When a resistance of  $2\Omega$  is connected as a shunt with the cell, the balance point is obtained at 100 cm. The internal resistance of the cell is

  - (a)  $0.1\Omega$  (b)  $1\Omega$
  - (c)  $2\Omega$  (d)  $0.5\Omega$

**127.** What is the reading of voltmeter in the following figure




- **128.** The current flowing in a coil of resistance 90  $\Omega$  is to be reduced by 90%. What value of resistance should be connected in parallel with it [MP PMT 2004]
  - (a)  $9 \Omega$  (b)  $90 \Omega$
  - (c) 1000  $\Omega$  (d) 10  $\Omega$
- **129.** The maximum current that can be measured by a galvanometer of resistance 40  $\Omega$  is 10 *mA*. It is converted into a voltmeter that can read upto 50 *V*. The resistance to be connected in series with the galvanometer is ... (in *ohm*)

[KCET 2004]

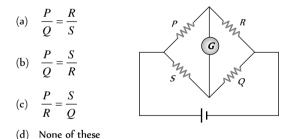
[MP PET 1993]

| (a) | 5040 | (b) | 4960 |
|-----|------|-----|------|
| (c) | 2010 | (d) | 4050 |

130. For the post office box arrangement to determine the value of [EAMCEP02003] esistance the unknown resistance should be connected between [IIT-JEE (Screening) 2004]



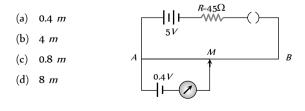
**131.** A galvanometer of 50 *ohm* resistance has 25 divisions. A current of  $4 \times 10^{\circ}$  *ampere* gives a deflection of one division. To convert this galvanometer into a voltmeter having a range of 25 *volts*, it should be connected with a resistance of


#### [CBSE PMT 2004]

- (a) 2500  $\Omega$  as a shunt (b) 2450  $\Omega$  as a shunt
- (c) 2550  $\Omega$  in series (d) 2450  $\Omega$  in series
- **132.** In a metre bridge experiment null point is obtained at 20 *cm* from one end of the wire when resistance X is balanced against another resistance Y. If X < Y, then where will be the new position of the null point from the same end, if one decides to balance a resistance of 4X against Y

#### [AIEEE 2004]

| (a) | <sup>50</sup> [м <sup>р</sup> рмт 2003] | (b) | 80 <i>cm</i> |
|-----|-----------------------------------------|-----|--------------|
| (c) | 40 <i>cm</i>                            | (d) | 70 cm        |


133. In the circuit given, the correct relation to a balanced Wheatstone bridge is [Orissa PMT 2004]



134. A galvanometer coil of resistance 50  $\Omega$ , show full deflection of  $100 \mu A$ . The shunt resistance to be added to the galvanometer, to work as an ammeter of range 10 mA is

#### [Pb PET 2000]

- (a) 5  $\Omega$  in parallel (b) 0.5  $\Omega$  in series
- (c) 5  $\Omega$  in series (d) 0.5  $\Omega$  in parallel
- **135.** In given figure, the potentiometer wire *AB* has a resistance of 5  $\Omega$  and length 10 *m*. The balancing length *AM* for the emf of 0.4 *V* is



A potentiometer consists of a wire of length 4 m and resistance 10 136.  $\Omega$ . It is connected to cell of emf 2 V. The potential difference per unit length of the wire will be

|     |                |     |               | [Pb. PET 2002] |
|-----|----------------|-----|---------------|----------------|
| (a) | 0.5 <i>V/m</i> | (b) | 10 <i>V/m</i> |                |
| (c) | 2 V/m          | (d) | 5 V/m         |                |

A voltmeter essentially consists of 137.

(a) A high resistance, in series with a galvanometer

- (b) A low resistance, in series with a galvanometer
- (c) A high resistance in parallel with a galvanometer
- (d) A low resistance in parallel with a galvanometer
- In a potentiometer experiment the balancing with a cell is at length 138. 240 cm. On shunting the cell with a resistance of 2  $\Omega$ , the balancing length becomes 120 cm. The internal resistance of the cell is

| $(a)  4 \ \Omega \qquad \qquad (b)$ | 2Ω |
|-------------------------------------|----|
|-------------------------------------|----|

- (c)  $1\Omega$ (d) 0.5 Ω
- 139. With a potentiometer null point were obtained at 140 cm and 180 cm with cells of emf 1.1 V and one unknown X volts. Unknown emf is [DCE 2002]

| (a) | 1.1 V | (b) | 1.8 V  |
|-----|-------|-----|--------|
| (c) | 2.4 V | (d) | 1.41 V |

A moving coil galvanometer of resistance 100 $\Omega$  is used as an 140. ammeter using a resistance  $0.1\Omega$ . The maximum deflection current in the galvanometer is  $100 \mu A$ . Find the minimum current in the circuit so that the ammeter shows maximum deflection

| (a) | 100.1 <i>mA</i> | (b) | 1000.1 <i>mA</i> |
|-----|-----------------|-----|------------------|
| (c) | 10.01 <i>mA</i> | (d) | 1.01 <i>mA</i>   |

141. Two resistances are connected in two gaps of a metre bridge. The balance point is 20 cm from the zero end. A resistance of 15 ohms is connected in series with the smaller of the two. The null point shifts to 40 cm. The value of the smaller resistance in ohms is

| (a) | 3 | (b) | 6  |
|-----|---|-----|----|
| (c) | 9 | (d) | 12 |

If resistance of voltmeter is  $10000\Omega$  and resistance of ammeter is 142.  $2\Omega$  then find R when voltmeter reads 12 V and ammeter reads 0.1 A

| (a) | II8 Ω | (b) | 120 Ω |
|-----|-------|-----|-------|
| (c) | 124 Ω | (d) | 114Ω  |

143. Potentiometer wire of length 1 m is connected in series with 490  $\Omega$ resistance and 2V battery. If 0.2 mV/cm is the potential gradient, then resistance of the potentiometer wire is

| (a) | 4.9 Ω | (b) | <b>7.9</b> Ω |
|-----|-------|-----|--------------|
|-----|-------|-----|--------------|

(c) 5.9 Ω (d) 6.9 Ω

Critical Thinking **Objective Questions** 

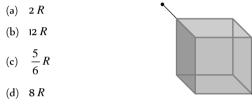
1. In an electrical cable there is a single wire of radius 9 mm of copper. Its resistance is  $5\Omega$ . The cable is replaced by 6 different insulated copper wires, the radius of each wire is 3 mm. Now the total resistance of the cable will be

[CPMT 1988]

- 7.5Ω  $45 \Omega$ (b) (a)
- 90 Ω (d) 270Ω (c)

2.

3.

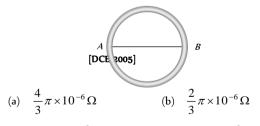

5.

6.

[UPSEAT 2004]

Two uniform wires A and B are of the same metal and have equal masses. The radius of wire A is twice that of wire B. The total resistance of A and B when connected in parallel is

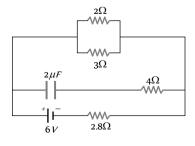
- $4\,\Omega$  when the resistance of wire A is  $4.25\,\Omega$ (a)
- (b)  $5\Omega$  when the resistance of wire A is  $4.25\Omega$
- $4 \Omega$  when the resistance of wire *B* is  $4.25 \Omega$ (c)
- (d)  $4\Omega$  when the resistance of wire *B* is  $4.25\Omega$
- Twelve [DCE:2002:AIEEE 2005] and same cross-section are connected in the form of a cube. If the resistance of each of the wires is R, then the effective resistance between the two diagonal ends would [] & K CET 2004] be




You are given several identical resistances each of value  $R = 10 \Omega$ 4. [IIT-JEE (Screening) 2005] f carrying maximum current of 1 ampere. It is required to make a suitable combination of these resistances to produce a resistance of  $5\,\Omega$  which can carry a current of 4 amperes. The minimum number of resistances of the type R that will be required for this job

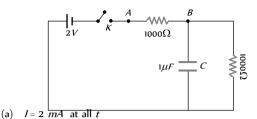
[CBSE PMT 1990]

| (a) | 4 [KCET 2005] | (b) | 10 |
|-----|---------------|-----|----|
| (c) | 8             | (d) | 20 |


The resistance of a wire is  $10^{-6}\Omega$  per metre. It is bend in the form of a circle of diameter 2m. A wire of the same material is [BCECE 2005] connected across its diameter. The total resistance across its diameter AB will be



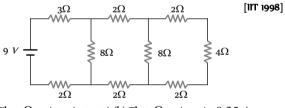
(c)  $0.88 \times 10^{-6} \Omega$ (d)  $14\pi \times 10^{-6} \Omega$ 


In the figure shown, the capacity of the condenser C is  $2 \mu F$ . The [IIT 1982]

current in  $2\Omega$  resistor is



(c) 
$$\frac{1}{9}A$$
 (d)  $\frac{1}{0.9}A$ 


7. When the key *K* is pressed at time t = 0, which of the following statements about the current *I* in the resistor *AB* of the given circuit is true [CBSE PMT 1995]



- (b) I oscillates between 1 mA and 2mA
- (c) l = 1 mA at all t
- (d) At t = 0, l = 2 mA and with time it goes to 1 mA
- A torch bulb rated as 4.5 W, 1.5 V is connected as shown in the figure. The *e.m.f.* of the cell needed to make the bulb glow at full intensity is [MP PMT 1999]

| (a) 4.5 V  | 4.5 W<br>1.5 V |
|------------|----------------|
| (b) 1.5 V  | ıΩ             |
| (c) 2.67 V |                |

- (d) 13.5 V  $E(r=2.67\Omega)$
- 9. In the circuit shown in the figure, the current through




- (a) The 3 $\Omega$  resistor is 0.50A (b) The 3 $\Omega$  resistor is 0.25 A
- (c) The 4 $\Omega$  resistor is 0.50A (d) The 4 $\Omega$  resistor is 0.25 A
- **10.** There are three resistance coils of equal resistance. The maximum number of resistances you can obtain by connecting them in any manner you choose, being free to use any number of the coils in any way is

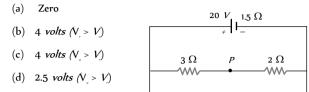
#### [ISM Dhanbad 1994]

| (a) | 3 | (b) |
|-----|---|-----|
| (c) | 6 | (d) |

**11.** In the circuit shown, the value of each resistance is *r*, then equivalent resistance of circuit between points *A* and *B* will be

4 5




(b) 3*r* / 2

(a) = 12

(c) r/3



If in the circuit shown below, the internal resistance of the battery is 1.5  $\Omega$  and V and V are the potentials at P and Q respectively, what is the potential difference between the points P and Q



Two wires of resistance R and R have temperature coefficient of resistance  $\alpha_1$  and  $\alpha_2$ , respectively. Where are joined in series. The effective temperature coefficient of resistance is

(a) 
$$\frac{\alpha_1 + \alpha_2}{2}$$
 (b)  $\sqrt{\alpha_1 \alpha_2}$ 

(c) 
$$\frac{\alpha_1 R_1 + \alpha_2 R_2}{R_1 + R_2}$$
 (d)  $\frac{\sqrt{R_1 R_2 \alpha_1 \alpha_2}}{\sqrt{R_1^2 + R_2^2}}$ 

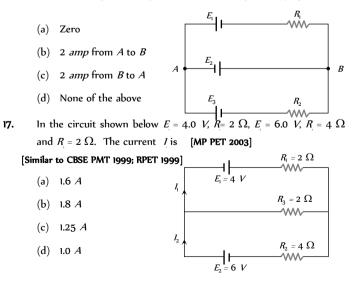
Two cells of equal *e.m.f.* and of internal resistances  $r_1$  and  $r_2(r_1 > r_2)$  are connected in series. On connecting this combination to an external resistance *R*, it is observed that the potential difference across the first cell becomes zero. The value of *R* will be

#### [MP PET 1985; KCET 2005; Kerala PMT 2005]

(a) 
$$r_1 + r_2$$
 (b)  $r_1 - r_2$   
(c)  $\frac{r_1 + r_2}{2}$  (d)  $\frac{r_1 - r_2}{2}$ 

15.

12.

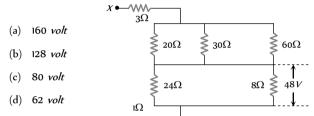

13.

14.

When connected across the terminals of a cell, a voltmeter measures 5V and a connected ammeter measures 10 *A* of current. A resistance of 2 *ohms* is connected across the terminals of the cell. The current flowing through this resistance will be

| (a) 2.5 A | (b) | 2.0 A |
|-----------|-----|-------|
|-----------|-----|-------|

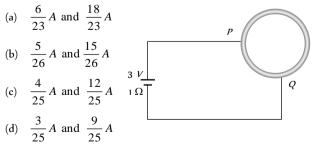
- (c) 5.0 A (d) 7.5 A
- **16.** In the circuit shown here, E = E = 2 *V* and R = R = 4 *ohms*. The current flowing between points *A* and *B* through battery *E* is




## INVERSAL 1084 Current Electricity

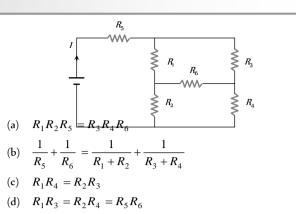
**18.** A microammeter has a resistance of  $100 \Omega$  and full scale range of  $50 \mu A$ . It can be used as a voltmeter or as a higher range ammeter provided a resistance is added to it. Pick the correct range and resistance combination

#### [SCRA 1996; AMU (Med.) 2001; Roorkee 2000]

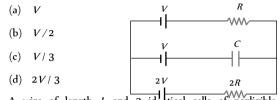

- (a) 50 V range with  $10 k\Omega$  resistance in series
- (b) 10 V range with  $200 k\Omega$  resistance in series
- (c) 10 mA range with  $1\,\Omega\,$  resistance in parallel
- (d) 10 mA range with  $0.1 \Omega$  resistance in parallel
- 19. The potential difference across 8 *ohm* resistance is 48 *volt* as shown in the figure. The value of potential difference across X and Y points will be [MP PET 1996]



**20.** Two resistances  $R_1$  and  $R_2$  are made of different materials. The temperature coefficient of the material of  $R_1$  is  $\alpha$  and of the material of  $R_2$  is  $-\beta$ . The resistance of the series combination of  $R_1$  and  $R_2$  will not change with temperature, if  $R_1 / R_2$  equals


(a) 
$$\frac{\alpha}{\beta}$$
 (b)  $\frac{\alpha + \beta}{\alpha - \beta}$   
(c)  $\frac{\alpha^2 + \beta^2}{\alpha\beta}$  (d)  $\frac{\beta}{\alpha}$ 

- **21.** An ionization chamber with parallel conducting plates as anode and cathode has  $5 \times 10^7$  electrons and the same number of singly-charged positive ions per  $cm^3$ . The electrons are moving at 0.4 *m/s*. The current density from anode to cathode is  $4 \mu A / m^2$ . The velocity of positive ions moving towards cathode is
  - (a) 0.4 *m/s* (b) 16 *m/s*
  - (c) Zero (d) 0.1 *m/s*
- **22.** A wire of resistance 10  $\Omega$  is bent to form a circle. *P* and *Q* are points on the circumference of the circle dividing it into a quadrant and are connected to a Battery of 3 *V* and internal resistance 1  $\Omega$  as shown in the figure. The currents in the two parts of the circle are




In the given circuit, it is observed that the current *I* is independent of the value of the resistance *R*. Then the resistance values must satisfy [IIT-JEE (Screening) 2001]

23.



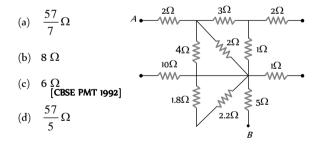
In the given circuit, with steady current, the potential drop across the capacitor must be [IIT-JEE (Screening) 2001]



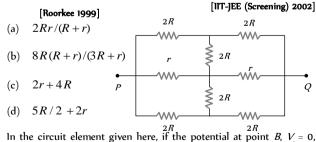
A wire of length *L* and 3 identical cells of negligible internal resistances are connected in series. Due to current, the temperature of the wire is raised by  $\Delta T$  in a time *t*. A number *N* of similar cells is now connected in series with a wire of the same material and cross-section but of length 2 *L*. The temperature of the wire is raised by the same amount  $\Delta T$  in the same time *t*. the value of *N* is

[MP PMT 1997]

(a) 4


24.

25.


(b) 6

[IIT-JEE (Screening) 2001]

- (c) 8 (d) 9
- 26. What is the equivalent resistance between the points *A* and *B* of the network [AMU (Engg.) 2001]



**27.** The effective resistance between points P and Q of the electrical circuit shown in the figure is

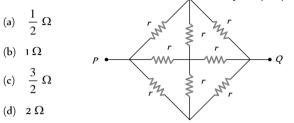


**28.** In the circuit element given here, if the potential at point B, V = 0, then the potentials of A and D are given as

1

[AMU (Med.) 2002]

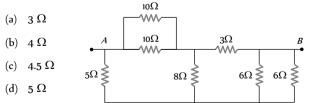
$$\begin{array}{c} amp & 1.5 \ \Omega & 2.5 \ \Omega & 2V \\ \hline A & B & C \\ \end{array} \begin{array}{c} V \\ D \\ \end{array}$$


- (a)  $V_A = -1.5 V, V_D = +2 V$  (b)  $V_A = +1.5 V, V_D = +2 V$
- (c)  $V_A = +1.5 V, V_D = +0.5 V$  (d)  $V_A = +1.5 V, V_D = -0.5 V$
- The equivalent resistance between the points P and Q in the network given here is equal to (given  $r = \frac{3}{2}\Omega$ )

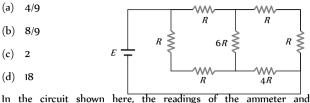
[AMU (Med.) 2002]

[KCET 2003]

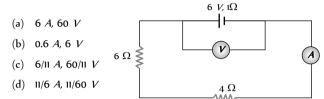
41.


 $R_2$ 




- The current in a conductor varies with time *t* as  $I = 2t + 3t^2$ 30. where *I* is in *ampere* and *t* in *seconds*. Electric charge flowing through a section of the conductor during t = 2 sec to t = 3 sec is
  - (a) 10 C (b) 24 C
  - (c) 33 C (d) 44 C
- 31. A group of N cells whose emf varies directly with the internal resistance as per the equation E = 1.5 r are connected as shown in the figure below. The current I in the circuit is

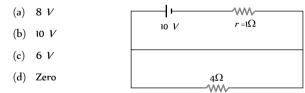



- (b) 5.1 *amp*
- (c) 0.15 amp
- (d) 1.5 amp
- In the shown arrangement of the experiment of the meter bridge if 32. AC corresponding to null deflection of galvanometer is  $x_i$ , what would be its value if the radius of the wire AB is doubled
  - (a) x
  - ┥┥┥ (b) x/4
  - R (c)  $4\lambda$
  - ۸۸۸. **1111** (d) 2*x* ( **G**
- The resistance of a wire of iron is 10 ohms and temp. coefficient of 33. resistivity is  $5 \times 10^{-3} / {}^{\circ}C$ . At 2( x it carries 30 milliamperes of current. Keeping constant potential difference between its ends, the temperature of the wire is raised to  $120^{\circ}C$ . The current in milliamperes that flows in the wire is
  - (a) 20 (b) 15
  - (c) 10 (d) 40
- Seven resistances are connected as shown in the figure. The 34 equivalent resistance between A and B is [MP PET 2000]

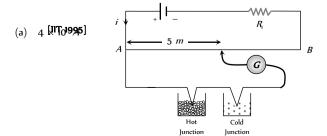


A battery of internal resistance  $4\Omega$  is connected to the network of 35. resistances as shown. In order to give the maximum power to the network, the value of R (in  $\Omega$  ) should be



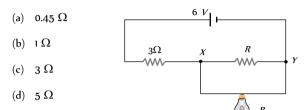

36. voltmeter are [Kerala PMT 2002]




- Length of a hollow tube is 5m, it's outer diameter is 10 cm and 37. thickness of it's wall is 5 mm. If resistivity of the material of the
  - (a)  $5.6 \times 10^{\circ} \Omega$ (b)  $2 \times 10^{-1} \Omega$
  - (c)  $4 \times 10^{\circ} \Omega$ (d) None of these
- 38. A wire of resistor R is bent into a circular ring of radius r. Equivalent resistance between two points X and Y on its circumference, when angle *XOY* is  $\alpha$ , can be given by

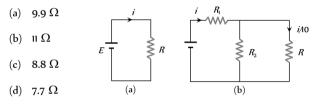


Potential difference across the terminals of the battery shown in 39. figure is (*r* = internal resistance of battery)




- As the switch S is closed in the circuit shown in figure, current 40. passed through it is
  - [MP PMT 1994] 2Ω  $4\Omega$ 5 V(a) 4.5 A  $\sim$ (b) 6.0 A ≩ 2Ω (c) 3.0 A S (d) Zero
  - In the following circuit a 10 m long potentiometer wire with resistance 1.2 ohm/m, a resistance R and an accumulator of emf 2 V are connected in series. When the emf of thermocouple is 2.4 mVthen the deflection in galvanometer is zero. The current supplied by the accumulator will be




29.

- (b)  $8 \times 10^{-4} A$
- (c)  $4 \times 10^{-3} A$
- (d)  $8 \times 10^{-4} A$
- **42.** In the following circuit, bulb rated as 1.5 V, 0.45 W. If bulbs glows with full intensity then what will be the equivalent resistance between X and Y

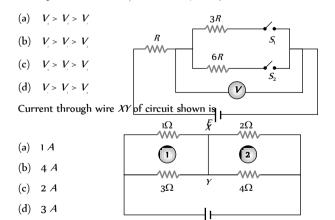


**43.** Consider the circuits shown in the figure. Both the circuits are taking same current from battery but current through *R* in the second circuit is  $\frac{1}{10}$  *th* of current through *R* in the first circuit. If *R* 

is 11  $\Omega$ , the value of R



**44.** In order to quadruple the resistance of a uniform wire, a part of its length was uniformly stretched till the final length of the entire wire was 1.5 times the original length, the part of the wire was fraction equal to


(a) 1/8

(d) 1/4

46.

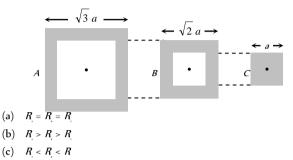
**45.** In the circuit shown in figure reading of voltmeter is *V* when only *S* is closed, reading of voltmeter is *V* when only *S* is closed and reading of voltmeter is *V* when both *S* and *S* are closed. Then

 $\leftarrow 0.5/ \rightarrow 0.5/$ 

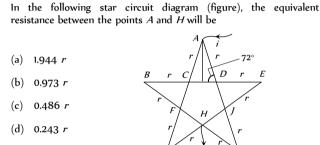


**47.** 12 cells each having same emf are consected in series with some cells wrongly connected. The arrangement is connected in series with an ammeter and two cells which are in series. Current is 3 *A* when cells and battery aid each other and is 2 *A* when cells and battery oppose each other. The number of cells wrongly connected is

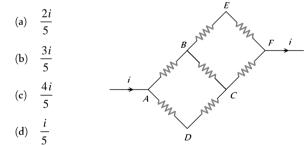
| 4 | (b) | 1 |
|---|-----|---|
| 3 | (d) | 2 |


(a)

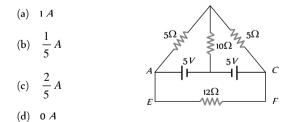
(c)


48.

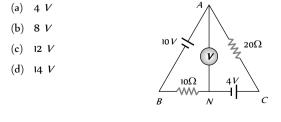
49.


Following figure shows cross-sections through three long conductors of the same length and material, with square cross-section of edge lengths as shown. Conductor B will fit snugly within conductor A, and conductor C will fit snugly within conductor B. Relationship between their end to end resistance is




(d) Information is not sufficient



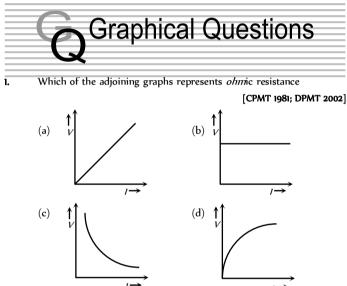

50. In the adjoining circuit diagram each resistance is of 10  $\Omega$ . The current in the arm AD will be



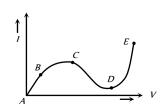
51. In the circuit of adjoining figure the current through 12  $\Omega$  resister will be



**52.** The reading of the ideal voltmeter in the adjoining diagram will be




LF SCOP


53. The resistance of the series combination of two resistance is S. When they are joined in parallel the total resistance is *P*. If S = nP, then the minimum possible value of n is

[AIEEE 2004]

- (a) 4 (b) 3 (c) 2 (d) 1
- A moving coil galvanometer has 150 equal divisions. Its current 54. sensitivity is 10 divisions per milliampere and voltage sensitivity is 2 divisions per millivolt. In order that each division reads 1 volt, the resistance in ohms needed to be connected in series with the coil will be [AIEEE 2005]
  - (a) 99995 (b) 9995
  - $10^{3}$ (d)  $10^5$ (c)



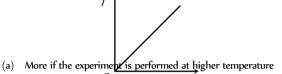
- Variation of current passing through a conductor  $\overrightarrow{as}$  the voltage 2. applied across its ends as varied is shown in the adjoining diagram. If the resistance (R) is determined at the points A, B, C and D, we will find that [CPMT 1988]
  - (a) R = R
  - (b) R > R
  - (c) R > R
  - (d) None of these
- The voltage V and current I graph for a conductor at two different 3. temperatures  $T_1$  and  $T_2$  are shown in the figure. The relation between  $T_1$  and  $T_2$  is
  - [MP PET 1996; KCET 2002] (a)  $T_1 > T_2$ (b)  $T_1 \approx T_2$ (c)  $T_1 = T_2$ (d)  $T_1 < T_2$
- From the graph between current I and voltage V shown below, identify the portion corresponding to negative resistance



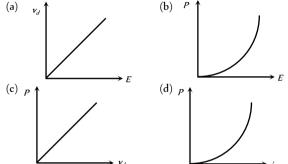
AB (b) *BC* 

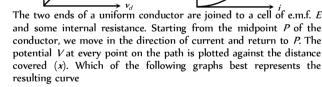
(a)

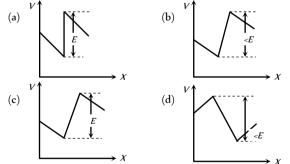
- (c) *CD*
- (d) *DE*


5.

6.


7.


8.


*LV* characteristic of a copper wire of length *L* and area of crosssection A is shown in figure. The slope of the curve becomes

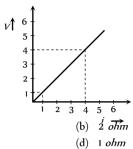


- More if a wire of steel of same dimension is used (b)
- (c) More if the length of the wire is increased
- (d) Less if the length of the wire is increased
- E denotes electric field in a uniform conductor, I corresponding current through it,  $v_d$  drift velocity of electrons and P denotes thermal power produced in the conductor, then which of the following graph is incorrect








The resistance  $R_t$  of a conductor varies with temperature t as shown in the figure. If the variation is represented by  $R_t = R_0 [1 + \alpha t + \beta t^2]$ , then [CPMT 1988]

- $\alpha$  and  $\beta$  are both negative (a)
- $\alpha$  and  $\beta$  are both positive (b)
- $\alpha$  is positive and  $\beta$  is negative (c)
- [**CBSE PMT 1997**]  $\alpha$  is negative and  $\beta$  are positive (d)



4

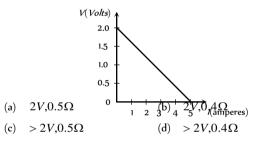
Variation of current and voltage in a conductor has been shown in 9. the diagram below. The resistance of the conductor is.



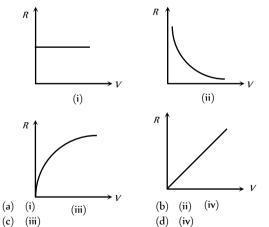
10.

(a) 4 *ohm* 

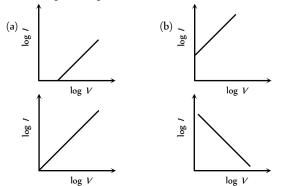
(c) 3 ohm


(a) A

Resistance as shown in figure is negative at [CPMT 1997]


 $(\mathcal{V}) \xrightarrow{B}$ 

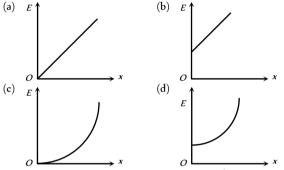



For a cell, the graph between the potential difference ( V) across the 11. terminals of the cell and the current (1) drawn from the cell is shown in the figure. The e.m.f. and the internal resistance of the cell are

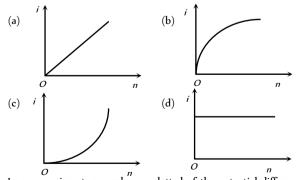


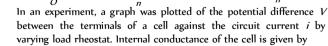
The graph which represents the relation between the total resistance 12. R of a multi range moving coil voltmeter and its full scale deflection Vis

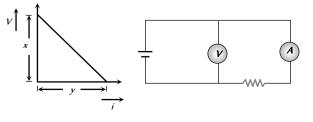



When a current I is passed through a wire of constant resistance, it 13. produces a potential difference V across its ends. The graph drawn between log 1 and log V will be




(c)


(d)


- The V-i graph for a conductor at temperature  $T_1$  and  $T_2$  are as 14. shown in the figure.  $(T_2 - T_1)$  is proportional to
  - (a)  $\cos 2\theta$ (b)  $\sin\theta$  $\cot 2\theta$ (c) (d)  $\tan \theta$
- A cylindrical conductor has uniform cross-section. Resistivity of its 15. material increase linearly from left end to right end. If a constant current is flowing through it and at a section distance x from left end, magnitude of electric field intensity is E, which of the following graphs is correct



- The V-i graph for a conductor makes an angle  $\theta$  with V-axis. Here 16. V denotes the voltage and i denotes current. The resistance of conductor is given by
  - $\sin\theta$ (b)  $\cos\theta$ (a)
  - (d) (c)  $\tan \theta$  $\cot \theta$
- 17.
  - A battery consists of a variable number 'n' of identical cells having internal resistances connected in series. The terminals of battery are short circuited and the current *i* is measured. Which of the graph below shows the relation ship between *i* and *n*







18.



Assertion

4.

5.

6.

7.

8.

9.

10.

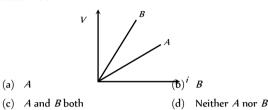
11.

12.

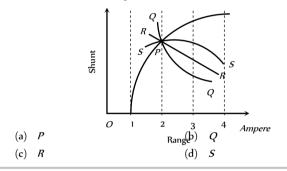
13.

14.

15.


16.

(a) xy (b)  $\frac{y}{x}$ 


(c) 
$$\frac{x}{y}$$
 (d)  $(x - y)$ 

19.

√-i graphs for parallel and series combination of two identical resistors are as shown in figure. Which graph represents parallel combination

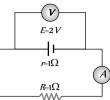


**20.** The ammeter has range 1 *ampere* without shunt. the range can be varied by using different shunt resistances. The graph between shunt resistance and range will have the nature



R Assertion & Reason

For AIIMS Aspirants


Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.

| 1. | Assertion | : | The resistivity of a semiconductor increases with temperature.                                                                              |
|----|-----------|---|---------------------------------------------------------------------------------------------------------------------------------------------|
|    | Reason    | : | The atoms of a semiconductor vibrate with larger<br>amplitude at higher temperatures thereby<br>increasing its resistivity [AIIMS 2003]     |
| 2. | Assertion | : | In a simple battery circuit the point of lowest potential is positive terminal of the battery                                               |
|    | Reason    | : | The current flows towards the point of the higher<br>potential as it flows in such a circuit from the<br>negative to the positive terminal. |
|    |           |   | [AIIMS 2002]                                                                                                                                |
| 3. | Assertion | : | The temperature coefficient of resistance is positive for metals and negative for <i>p</i> -type semiconductor.                             |
|    | Reason    | : | The effective charge carriers in metals are negatively charged whereas in <i>p</i> -type semiconductor they are positively charged.         |

[A11MS 1996]

: In the following circuit emf is 2V and internal resistance of the cell is  $1 \Omega$  and  $R = 1\Omega$ , then reading of the voltmeter is 1V.



| Reason | : $V = E - ir$ when | re $E = 2V$ , $i = \frac{2}{2} = 1A$ and $R =$ |
|--------|---------------------|------------------------------------------------|
|        | ıΩ                  | [AIIMS 1995]                                   |

- Assertion : There is no current in the metals in the absence of electric field.
- Reason : Motion of free electron are randomly.

## [AIIMS 1994]

Assertion : Electric appliances with metallic body have three connections, whereas an electric bulb has a two pin connection.

Reason : Three pin connections reduce heating of connecting wires.

Assertion : The drift velocity of electrons in a metallic wire will decrease, if the temperature of the wire is increased.

Reason : On increasing temperature, conductivity of metallic wire decreases.

Assertion : The electric bulbs glows immediately when switch is on.

Reason : The drift velocity of electrons in a metallic wire is very high.

Assertion : Bending a wire does not effect electrical resistance.

Reason : Resistance of wire is proportional to resistivity of material.

Assertion : In meter bridge experiment, a high resistance is always connected in series with a galvanometer.

Reason : As resistance increases current through the circuit increases.

Assertion : Voltameter measures current more accurately than ammeter.

Reason : Relative error will be small if measured from voltameter.

Assertion : Electric field outside the conducting wire which carries a constant current is zero.

Reason : Net charge on conducting wire is zero.

Assertion : The resistance of super-conductor is zero.

Reason : The super-conductors are used for the transmission of electric power.

Assertion : A potentiometer of longer length is used for accurate measurement.

Reason : The potential gradient for a potentiometer of longer length with a given source of e.m.f. becomes small.

Assertion : The e.m.f. of the driver cell in the potentiometer experiment should be greater than the e.m.f. of the cell to be determined.

Reason : The fall of potential across the potentiometer wire should not be less than the e.m.f. of the cell to be determined.

Assertion : A person touching a high power line gets stuck with the line.

| UNIVERSAL   |  |
|-------------|--|
| STIT COADED |  |

|     | Reason    | : | The current carrying wires attract the man towards it. |
|-----|-----------|---|--------------------------------------------------------|
| 17. | Assertion | : | The connecting wires are made of copper.               |

Reason : The electrical conductivity of copper is high.

Answers

## **Electric Conduction, Ohm's Law and Resistance**

| 1   | а | 2   | c | 3   | Ь | 4   | Ь | 5   | c |
|-----|---|-----|---|-----|---|-----|---|-----|---|
| 6   | a | 7   | a | 8   | a | 9   | d | 10  | с |
| 11  | d | 12  | d | 13  | a | 14  | c | 15  | a |
| 16  | а | 17  | c | 18  | b | 19  | с | 20  | b |
| 21  | d | 22  | b | 23  | b | 24  | b | 25  | d |
| 26  | С | 27  | b | 28  | b | 29  | b | 30  | a |
| 31  | с | 32  | d | 33  | b | 34  | d | 35  | с |
| 36  | b | 37  | b | 38  | с | 39  | а | 40  | d |
| 41  | b | 42  | b | 43  | а | 44  | b | 45  | с |
| 46  | а | 47  | b | 48  | b | 49  | с | 50  | а |
| 51  | С | 52  | c | 53  | b | 54  | b | 55  | b |
| 56  | а | 57  | a | 58  | а | 59  | С | 60  | с |
| 61  | а | 62  | b | 63  | b | 64  | С | 65  | с |
| 66  | d | 67  | a | 68  | b | 69  | d | 70  | d |
| 71  | а | 72  | а | 73  | с | 74  | b | 75  | b |
| 76  | с | 77  | с | 78  | с | 79  | d | 80  | b |
| 81  | а | 82  | d | 83  | b | 84  | b | 85  | с |
| 86  | b | 87  | c | 88  | а | 89  | а | 90  | d |
| 91  | а | 92  | c | 93  | b | 94  | а | 95  | b |
| 96  | b | 97  | c | 98  | а | 99  | с | 100 | d |
| 101 | С | 102 | а | 103 | d | 104 | b | 105 | b |
| 106 | d | 107 | d | 108 | а | 109 | d | 110 | d |
| 111 | d | 112 | d | 113 | а | 114 | а | 115 | С |
| 116 | а | 117 | a | 118 | b | 119 | С | 120 | a |
| 121 | d | 122 | a | 123 | a | 124 | d | 125 | c |
| 126 | b | 127 | c | 128 | a | 129 | а | 130 | c |
| 131 | с | 132 | b | 133 | с |     |   |     |   |

| 1  | с | 2  | d | 3  | a | 4  | c | 5  | b |
|----|---|----|---|----|---|----|---|----|---|
| 6  | C | 7  | С | 8  | b | 9  | а | 10 | b |
| 11 | d | 12 | d | 13 | b | 14 | d | 15 | b |
| 16 | d | 17 | С | 18 | C | 19 | b | 20 | d |
| 21 | а | 22 | а | 23 | b | 24 | b | 25 | C |
| 26 | b | 27 | d | 28 | d | 29 | d | 30 | C |
| 31 | b | 32 | d | 33 | а | 34 | b | 35 | C |
| 36 | d | 37 | d | 38 | b | 39 | С | 40 | b |

| 41  | a | 42  | C | 43  | b | 44  | d  | 45  | с |
|-----|---|-----|---|-----|---|-----|----|-----|---|
| 46  | d | 47  | С | 48  | b | 49  | b  | 50  | d |
| 51  | d | 52  | С | 53  | d | 54  | а  | 55  | C |
| 56  | d | 57  | C | 58  | C | 59  | d  | 60  | C |
| 61  | d | 62  | С | 63  | d | 64  | C  | 65  | C |
| 66  | C | 67  | b | 68  | С | 69  | d  | 70  | b |
| 71  | а | 72  | C | 73  | а | 74  | b  | 75  | a |
| 76  | C | 77  | C | 78  | b | 79  | С  | 80  | а |
| 81  | а | 82  | b | 83  | b | 84  | d  | 85  | d |
| 86  | а | 87  | а | 88  | а | 89  | b  | 90  | b |
| 91  | b | 92  | C | 93  | b | 94  | d  | 95  | а |
| 96  | d | 97  | b | 98  | b | 99  | d  | 100 | а |
| 101 | C | 102 | а | 103 | b | 104 | d  | 105 | а |
| 106 | а | 107 | b | 108 | d | 109 | bc | 110 | b |
| 111 | d | 112 | C | 113 | а | 114 | а  | 115 | d |
| 116 | а | 117 | d | 118 | C | 119 | d  | 120 | C |
| 121 | b | 122 | b | 123 | b | 124 | С  | 125 | b |
| 126 | а | 127 | С | 128 | b | 129 | С  | 130 | а |
| 131 | а | 132 | а | 133 | С | 134 | а  | 135 | b |
| 136 | b | 137 | а | 138 | b | 139 | С  | 140 | b |
| 141 | b |     |   |     |   |     |    |     |   |
|     |   |     |   |     |   |     |    |     |   |

## Kirchhoff's Law, Cells

| 1  | Ь | 2  | d | 3  | c | 4  | а | 5  | a |
|----|---|----|---|----|---|----|---|----|---|
| 6  | b | 7  | а | 8  | а | 9  | b | 10 | а |
| 11 | С | 12 | d | 13 | а | 14 | d | 15 | b |
| 16 | С | 17 | С | 18 | С | 19 | d | 20 | b |
| 21 | C | 22 | С | 23 | b | 24 | d | 25 | а |
| 26 | а | 27 | b | 28 | b | 29 | а | 30 | b |
| 31 | а | 32 | С | 33 | b | 34 | а | 35 | a |
| 36 | b | 37 | а | 38 | b | 39 | b | 40 | C |
| 41 | d | 42 | d | 43 | d | 44 | а | 45 | с |
| 46 | C | 47 | b | 48 | а | 49 | а | 50 | d |
| 51 | b | 52 | d | 53 | b | 54 | С | 55 | а |
| 56 | b | 57 | С | 58 | а | 59 | d | 60 | b |
| 61 | С | 62 | С | 63 | С | 64 | b | 65 | а |
| 66 | С | 67 | а | 68 | d | 69 | b | 70 | а |
| 71 | а | 72 | d | 73 | C | 74 | b | 75 | b |
| 76 | b | 77 | с | 78 | С | 79 | d | 80 | d |
| 81 | а | 82 | d | 83 | C | 84 | С | 85 | а |

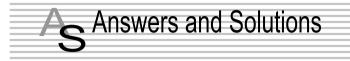
## **Different Measuring Instruments**

| 1  | а | 2  | с | 3  | d | 4  | d | 5  | C |
|----|---|----|---|----|---|----|---|----|---|
| 6  | c | 7  | а | 8  | d | 9  | C | 10 | C |
| 11 | d | 12 | С | 13 | d | 14 | а | 15 | d |
| 16 | C | 17 | а | 18 | b | 19 | C | 20 | а |
| 21 | b | 22 | b | 23 | a | 24 | а | 25 | а |
| 26 | a | 27 | а | 28 | a | 29 | b | 30 | b |
| 31 | b | 32 | b | 33 | b | 34 | b | 35 | C |
| 36 | c | 37 | b | 38 | b | 39 | d | 40 | b |

| 41  | а | 42  | b | 43  | C | 44  | d | 45  | a |
|-----|---|-----|---|-----|---|-----|---|-----|---|
| 46  | b | 47  | С | 48  | а | 49  | b | 50  | a |
| 51  | b | 52  | С | 53  | b | 54  | b | 55  | a |
| 56  | b | 57  | d | 58  | C | 59  | C | 60  | d |
| 61  | а | 62  | а | 63  | d | 64  | а | 65  | d |
| 66  | b | 67  | а | 68  | b | 69  | C | 70  | C |
| 71  | d | 72  | C | 73  | а | 74  | C | 75  | а |
| 76  | d | 77  | b | 78  | а | 79  | b | 80  | а |
| 81  | C | 82  | C | 83  | a | 84  | а | 85  | b |
| 86  | d | 87  | C | 88  | d | 89  | C | 90  | a |
| 91  | d | 92  | d | 93  | d | 94  | C | 95  | d |
| 96  | а | 97  | C | 98  | a | 99  | d | 100 | d |
| 101 | C | 102 | d | 103 | C | 104 | C | 105 | a |
| 106 | C | 107 | С | 108 | d | 109 | С | 110 | a |
| 111 | а | 112 | а | 113 | С | 114 | b | 115 | C |
| 116 | d | 117 | а | 118 | b | 119 | d | 120 | C |
| 121 | d | 122 | C | 123 | а | 124 | а | 125 | b |
| 126 | b | 127 | d | 128 | d | 129 | b | 130 | C |
| 131 | d | 132 | а | 133 | С | 134 | d | 135 | d |
| 136 | а | 137 | а | 138 | b | 139 | d | 140 | a |
| 141 | C | 142 | а | 143 | а |     |   |     |   |

# **Critical Thinking Questions**

| 1  | а | 2  | а | 3  | c | 4  | c | 5  | c |
|----|---|----|---|----|---|----|---|----|---|
| 6  | b | 7  | d | 8  | d | 9  | d | 10 | b |
| 11 | d | 12 | d | 13 | C | 14 | b | 15 | b |
| 16 | b | 17 | b | 18 | b | 19 | а | 20 | d |
| 21 | d | 22 | а | 23 | C | 24 | C | 25 | b |
| 26 | b | 27 | а | 28 | d | 29 | b | 30 | b |
| 31 | d | 32 | а | 33 | а | 34 | b | 35 | С |
| 36 | С | 37 | а | 38 | a | 39 | d | 40 | а |
| 41 | а | 42 | b | 43 | a | 44 | а | 45 | b |
| 46 | С | 47 | b | 48 | а | 49 | b | 50 | а |
| 51 | d | 52 | b | 53 | а | 54 | b |    |   |


# **Graphical Questions**

| 1  | a | 2  | d | 3  | a | 4  | с | 5  | d |
|----|---|----|---|----|---|----|---|----|---|
| 6  | С | 7  | b | 8  | b | 9  | d | 10 | а |
| 11 | b | 12 | d | 13 | а | 14 | С | 15 | b |
| 16 | d | 17 | d | 18 | b | 19 | а | 20 | b |



## Assertion and Reason

| 1  | d | 2  | d | 3  | b | 4  | а | 5  | а |
|----|---|----|---|----|---|----|---|----|---|
| 6  | С | 7  | b | 8  | С | 9  | а | 10 | C |
| 11 | а | 12 | а | 13 | b | 14 | а | 15 | а |
| 16 | d | 17 | a |    |   |    |   |    |   |
|    |   |    |   |    |   |    |   |    |   |



## **Electric Conduction, Ohm's Law and Resistance**

1. (a) Number of electrons flowing per second

$$\frac{n}{t} = \frac{i}{e} = 4.8 / 1.6 \times 10^{-19} = 3 \times 10^{19}$$

**2.** (c)  $v_d = \frac{J}{ne} \implies v_d \propto J$  (current density)

$$J_1 = \frac{i}{A}$$
 and  $J_2 = \frac{2i}{2A} = \frac{i}{A} = J_1$ ;  $\therefore (v_d)_1 = (v_d)_2 = v_d$ 

- 3. (b) Order of drift velocity  $= 10^{-4} m / sec = 10^{-2} cm / sec$
- 4. (b) Density of  $Cu = 9 \times 10^3 kg / m^3$  (mass of 1 *m* of *Cu*)
  - $\therefore$  6.0  $\times$  10° atoms has a mass = 63  $\times$  10° kg
  - $\therefore$  Number of electrons per *m* are

$$=\frac{6.0\times10^{23}}{63\times10^{-3}}\times9\times10^{3}=8.5\times10^{28}$$

Now drift velocity  $= v_d = \frac{i}{neA}$ 

$$=\frac{1.1}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times \pi \times (0.5 \times 10^{-3})^2}$$
$$= 0.1 \times 10^{-3} m / sec$$

**5.** (c) Because 1 *H.P.* = 746 *J/s* = 746 *watt* 

6. (a) 
$$R \propto l^2 \Rightarrow \frac{\Delta R}{R} = \frac{2\Delta l}{l} \Rightarrow \frac{\Delta R_0}{R} \% = 2 \times 0.1 = 0.2\%$$

7. (a) 
$$R = \frac{\rho l}{A} = 50 \times 10^{-8} \times \frac{50 \times 10^{-2}}{(50 \times 10^{-2})^2} = 10^{-6} \Omega$$

 (a) Resistivity of some material is its intrinsic property and is constant at particular temperature. Resistivity does not depend upon shape.

9. (d) 
$$\frac{\rho_1}{\rho_2} = \frac{(1 + \alpha t_1)}{(1 + \alpha t_2)} \Rightarrow \frac{1}{2} = \frac{(1 + 0.00125 \times 27)}{(1 + 0.00125 \times t)}$$
  
 $\Rightarrow t = 854^{\circ}C \Rightarrow T = 1127K$ 

10. (c) 
$$R_1 \propto \frac{i}{A} \Rightarrow R_2 \propto \frac{2i}{2A} i.e.R_2 \propto \frac{i}{A}$$
  
 $\therefore R_1 = R_2$ 

**11.** (d) In case of stretching of wire  $R \propto l^2$ 

 $\Rightarrow$  If length becomes 3 times so Resistance becomes 9 times *i.e.*  $R' = 9 \times 20 = 180\Omega$ 

- (d) Resistivity is the property of the material. It does not depend upon size and shape.
- (a) Because with rise in temperature resistance of conductor increase, so graph between V and i becomes non linear.
- **14.** (c) Because V-*i* graph of diode is non-linear.

**15.** (a) 
$$v_d = \frac{e}{m} \times \frac{V}{l} \tau$$
 or  $v_d = \frac{e}{m} \cdot \frac{El}{l} \tau$  (Since  $V = El$ )  
 $\therefore v_d \propto E$ 

**16.** (a) Resistance of conductor depends upon relation as  $R \propto \frac{1}{\tau}$ . With rise in temperature *rms* speed of free electron inside the conductor increase, so relaxation time decrease and hence resistance increases

**7.** (c) 
$$i = \frac{q}{t} = \frac{4}{2} = 2 \text{ ampere}$$

12.

13.

**18.** (b) Volume = 
$$Al = 3 \Rightarrow A = \frac{3}{l}$$

Now 
$$R = \rho \frac{l}{A} \Rightarrow 3 = \frac{\rho \times l}{3/l} = \frac{\rho l^2}{3} \Rightarrow l^2 = \frac{9}{\rho} = \frac{3}{\sqrt{\rho}}$$

**19.** (c) 
$$i = \frac{ne}{t} = \frac{62.5 \times 10^{18} \times 1.6 \times 10^{-19}}{1} = 10 \text{ ampere}$$

**20.** (b) In twisted wire, two halves each of resistance  $2\Omega$  are in parallel, so equivalent resistance will be  $\frac{2}{2} = 1\Omega$ .

**21.** (d) In stretching of wire 
$$R \propto \frac{1}{r^4}$$

22. (b) 
$$R = \frac{\rho L}{A} \Rightarrow 0.7 = \frac{\rho \times 1}{\frac{22}{7} (1 \times 10^{-3})^2}$$

$$\rho = 2.2 \times 10^{-6}$$
 ohm-m.

**23.** (b) 
$$R \propto \frac{1}{A} \Rightarrow R \propto \frac{1}{r^2} \propto \frac{1}{d^2}$$
 [*d* = diameter of wire]

**4.** (b) 
$$i = qv = 1.6 \times 10^{-19} \times 6.6 \times 10^{15} = 10.56 \times 10^{-4} A = 1mA$$

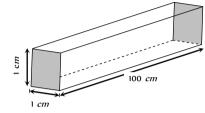
**25.** (d) 
$$R \propto \frac{l}{r^2} \Rightarrow \frac{R_1}{R_2} = \frac{l_1}{l_2} \times \frac{r_2^2}{r_1^2} \Rightarrow \frac{1}{1} = \frac{5}{l_2} \times \left(\frac{2}{1}\right)^2 \Rightarrow l_2 = 20m$$

2

2

**28.** (b) Net current 
$$i_{net} = i_{(+)} + i_{(-)}$$

= 
$$3.2 \times 10^{\circ} \times 2 \times 1.6 \times 10^{\circ} + 3.6 \times 10^{\circ} \times 1.6 \times 10^{\circ}$$


= 1.6 A (towards right)

**29.** (b) In the absence of external electric field mean velocity of free electron (V) is given by  $V_{mer} = \sqrt{\frac{3KT}{2}} \Rightarrow V_{mer} \propto \sqrt{T}$ 

etron 
$$(V_{)}$$
 is given by  $V_{ms} = \sqrt{\frac{1}{m}} \Rightarrow V_{ms} \propto \sqrt{T}$ 

- **30.** (a) With rise in temperature specific resistance increases
- **31.** (c) For metallic conductors, temperature co-efficient of resistance is positive.
- **32.** (d)

**33.** (b) Length 
$$l = 1 \ cm = 10^{-2} \ m$$



Area of cross-section  $A = 1 \ cm \times 100 \ cm$ 

$$= 100 \ cm = 10^{\circ} \ m$$

Resistance 
$$R = 3 \times 10^{\circ} \times \frac{10^{-2}}{10^{-2}} = 3 \times 10^{\circ} \Omega$$

**34.** (d) In the above question for calculating equivalent resistance between two opposite square faces.

 $I = 100 \ cm = 1 \ m, \ A = 1 \ cm = 10^{\circ} \ m, \text{ so resistance } R = 3 \times 10^{\circ}$  $\times \frac{1}{10^{-4}} = 3 \times 10^{\circ} \ \Omega$ 

**35.** (c) 
$$v_d = \frac{i}{nAe} = \frac{20}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}} = 1.25 \times 10^{-3} m / s$$

**36.** (b) Specific resistance  $k = \frac{E}{j}$ 

 $\Rightarrow R = R = R$ .

**37.** (b) 
$$R \propto \frac{l}{A} \propto \frac{l}{d^2} \Rightarrow \frac{R_1}{R_2} = \frac{l_1}{l_2} \times \left(\frac{d_2}{d_1}\right)^2 = \frac{L}{4L} \left(\frac{2d}{d}\right)^2 = 1$$

**38.** (c) 
$$v_d = \frac{i}{nAe} = \frac{1.344}{10^{-6} \times 1.6 \times 10^{-19} \times 8.4 \times 10^{22}}$$
  
=  $\frac{1.344}{10 \times 1.6 \times 8.4} = 0.01 cm / s = 0.1 mm / s$ 

**39.** (a) Internal resistance 
$$\propto \frac{1}{\text{Temperatur e}}$$

**40.** (d) Charge = Current × Time =  $5 \times 60 = 300 C$ 

**41.** (b) By 
$$R = \rho l / A$$

- **42.** (b)
- **43.** (a)

**44.** (b) 
$$R = \frac{\rho l}{a}$$
 for first wire and  $R = \frac{\rho l}{4a} = \frac{R}{4}$  for second wire.

**45.** (c) For semiconductors, resistance decreases on increasing the temperature.

**46.** (a) 
$$R = \rho \frac{l}{A} = \frac{n}{ne^2\tau} \cdot \frac{l}{A}$$

- **47.** (b) Because as temperature increases, the resistivity increases and hence the relaxation time decreases for conductors  $\left(\tau \propto \frac{1}{\rho}\right)$ .
- $\label{eq:48.} \textbf{(b)} \quad \text{In VI graph, we will not get a straight line in case of liquids.}$

**49.** (c) 
$$R = \rho \frac{l}{A}$$

50. (a) Since  $R \propto l^2 \Rightarrow$  If length is increased by 10%, resistance is increases by almost 20%

Hence new resistance R' = 10 + 20% of 10

$$= 10 + \frac{20}{100} \times 10 = 12 \,\Omega.$$

51. (c) 
$$\frac{R_{150}}{R_{500}} = \frac{[1 + \alpha(150)]}{[1 + \alpha(500)]}$$
. Putting  $R_{150} = 133\Omega$  and  $\alpha = 0.0045 / {}^{\circ}C$ , we get  $R_{500} = 258\Omega$ 

52. (c) 
$$R = \rho \frac{l}{A} \Rightarrow 7 = \frac{64 \times 10^{-6} \times 198}{\frac{22}{7} \times r^2} \Rightarrow r = 0.024 cm$$

**53.** (b) Current density 
$$J = \frac{i}{A} = \frac{i}{\pi r^2} \Rightarrow \frac{J_1}{J_2} = \frac{i_1}{i_2} \times \frac{r_2^2}{r_1^2}$$
  
But the wires are in series, so they have the same current,

hence 
$$i_1 = i_2$$
. So  $\frac{J_1}{J_2} = \frac{r_2^2}{r_1^2} = 9:1$ 

**54.** (b) As 
$$\frac{V}{i} = R$$
 and  $R \propto$  temperature

**55.** (b)  $R \propto l^2 \Rightarrow$  If *l* doubled then *R* becomes 4 times.

- **56.** (a) Temperature coefficient of a semiconductor is negative.
- **57.** (a) The reciprocal of resistance is called conductance

**58.** (a) Resistance = 
$$\frac{Potential difference}{Current}$$

- 59. (c) Ohm's Law is not obeyed by semiconductors.
- **60.** (c) Drift velocity  $v_d = \frac{V}{\rho \ln e}$ ;  $v_d$  does not depend upon diameter.

-P [1 +  $\alpha$ (100 50)]

**61.** (a) Using 
$$R_{T_2} = R_{T_1}[1 + \alpha(T_2 - T_1)]$$

 $\rightarrow D$ 

$$\Rightarrow 7 = 5[1 + (\alpha \times 50)] \Rightarrow \alpha = \frac{(7-5)}{250} = 0.008 / ^{\circ} C$$

**62.** (b) This is because of secondary ionisation which is possible in the gas filled in it.

64. (c) 
$$\frac{R_1}{R_2} = \frac{(1 + \alpha t_1)}{(1 + \alpha t_2)} \Rightarrow \frac{50}{76.8} = \frac{(1 + 3.92 \times 10^{-3} \times 20)}{(1 + 3.92 \times 10^{-3} t)}$$
  
 $\Rightarrow t = 167^{\circ}C$ 

**65.** (c) From 
$$v_d = \frac{i}{neA} \Rightarrow i \propto v_d A \Rightarrow i \propto v_d r^2$$

66. (d) Resistivity depends only on the material of the conductor.

A particular temperature, the resistance of a superconductor is (a) 67. zero  $\Rightarrow G = \frac{1}{R} = \frac{1}{0} = \infty$ 

**68.** (b) Net current 
$$i = i_+ + i_- = \frac{(n_+)(q_+)}{4} + \frac{(n_-)(q_-)}{4}$$

$$\Rightarrow i = \frac{(n_{+})}{t} \times e + \frac{(n_{-})}{t} \times e$$
$$= 2.9 \times 10^{18} \times 1.6 \times 10^{-19} + 1.2 \times 10^{18} \times 1.6 \times 10^{-19}$$
$$\Rightarrow i = 0.66 A$$

$$\Rightarrow i = 0.66$$

(d) If *E* be electric field, then current density  $j = \sigma E$ 69.

Also we know that current density  $j = \frac{i}{4}$ 

Hence j is different for different area of cross-sections. When jis different, then *E* is also different. Thus *E* is not constant. The drift velocity  $v_d$  is given by  $v_d = \frac{j}{ne}$  = different for different *j* values. Hence only current *i* will be constant.

**71.** (a) 
$$R = \rho \frac{l}{A}$$
 and mass  $m$  = volume ( $V$ ) × density ( $d$ ) = ( $A$   $l$ )  $d$ 

Since wires have same material so  $\rho$  and d is same for both. 1 = 1

Also they have same mass 
$$\Rightarrow AI = \text{constant} \Rightarrow l \propto \frac{1}{A}$$

$$\Rightarrow \frac{R_1}{R_2} = \frac{l_1}{l_2} \times \frac{A_2}{A_1} = \left(\frac{A_2}{A_1}\right)^2 = \left(\frac{r_2}{r_1}\right)^4$$
$$\Rightarrow \frac{34}{R_2} = \left(\frac{r}{2r}\right)^4 \Rightarrow R_2 = 544 \,\Omega$$

(a)  $R = \rho \frac{l}{A} \Rightarrow \frac{R_1}{R_2} = \frac{A_2}{A_1}(\rho, L \text{ constant}) \Rightarrow \frac{A_1}{A_2} = \frac{R_2}{R_1} = 2$ 72.

Now, when a body dipped in water, loss of weight  $= V\sigma_L g = AL\sigma_L g$ 

So, 
$$\frac{(\text{Lossofweight})_1}{(\text{Lossofwight})_2} = \frac{A_1}{A_2} = 2$$
; so A has more loss of weight.

**73.** (c) 
$$Q = it = 20 \times 10^{\circ} \times 30 = 6 \times 10^{\circ} C$$

74. (b) Ge is semiconductor and Na is a metal. The conductivity of semiconductor increases and that of the metals decreases with the rise in temperature.

**75.** (b) 
$$i = \frac{ne}{t} \Rightarrow n = \frac{it}{e} = \frac{1.6 \times 10^{-3} \times 1}{1.6 \times 10^{-19}} = 10^{16}$$
.

**76.** (c) Drift velocity 
$$v_d = \frac{i}{neA} \Rightarrow v_d \propto \frac{1}{A}$$
 or  $v_d \propto \frac{1}{d^2}$ 

$$\Rightarrow \frac{v_P}{v_Q} = \left(\frac{d_Q}{d_P}\right)^2 = \left(\frac{d/2}{d}\right)^2 = \frac{1}{4} \Rightarrow v_P = \frac{1}{4}v_Q.$$

Human body, though has a large resistance of the order, of 77. (c)  $K\Omega$  (say  $10k\Omega$ ), is very sensitive to minute currents even as low as a few mA. Electrons, excites and disorders the nervous system of the body and hence one fails to control the activity of the body.

**78.** (c) 
$$R_t = R_0 (1 + \alpha t)$$

$$\Rightarrow$$
 4.2 =  $R_0(1 + 0.004 \times 100) = 1.4 R_0 \Rightarrow R_0 = 3\Omega$ .

**79.** (d) 
$$R \propto \frac{l^2}{m} \Rightarrow R_1 : R_2 : R_3 = \left(\frac{l_1}{m_1}\right)^2 : \left(\frac{l_2}{m_2}\right)^2 : \left(\frac{l_3}{m_3}\right)^2$$
  
 $= \frac{25}{1} : \frac{9}{3} : \frac{1}{5} = 25 : 3 : \frac{1}{5} \Rightarrow 125 : 15 : 1.$ 

80. (b)

**81.** (a) 
$$\frac{R_1}{R_2} = \left(\frac{r_2}{r_1}\right)^4 \Rightarrow \frac{R}{R_2} = \left(\frac{nr}{r}\right)^4 \Rightarrow R_2 = \frac{R}{n^4}$$

82. (d) 
$$\frac{R_1}{R_2} = \frac{(1 + \alpha t_1)}{(1 + \alpha t_2)} \Rightarrow \frac{5}{6} = \frac{(1 + \alpha \times 50)}{(1 + \alpha \times 100)} \Rightarrow \alpha = \frac{1}{200} \text{ per}^{-\alpha} C$$

Again by 
$$R_t = R_0(1 + \alpha t)$$

$$\Rightarrow 5 = R_0 \left( 1 + \frac{1}{200} \times 50 \right) \Rightarrow R_0 = 4\Omega.$$

83. (b) 
$$i = \frac{Q}{T} = Q v = 1.6 \times 10^{-19} \times 5 \times 10^{15} = 0.8 mA$$

84. (b) 
$$\frac{r_{\text{iron}}}{r_{\text{Copper}}} = \sqrt{\frac{\rho_{\text{iron}}}{\rho_{\text{copper}}}} = \sqrt{\frac{1 \times 10^{-7}}{1.7 \times 10^{-8}}} \approx 2.4$$
.

**85.** (c) 
$$i = e v = 1.6 \times 10^{-19} \times 6.8 \times 10^{15} = 1.1 \times 10^{-3} amp.$$

86. (b) Resistivity of the material of the rod  

$$\rho = \frac{RA}{l} = \frac{3 \times 10^{-3} \pi (0.3 \times 10^{-2})^2}{1} = 27 \times 10^{-9} \pi \,\Omega \times m$$

Resistance of disc  $R = \frac{(\text{Thickness})}{(\text{Area of cross section})}$ 

$$27 \times 10^{-9} \pi \times \frac{(10^{-3})}{\pi \times (1 \times 10^{-2})^2} = 2.7 \times 10^{-7} \Omega$$

**87.** (c) By using 
$$R_t = R_0 (1 + \alpha t)$$

$$3 \times R_0 = R_0 (1 + 4 \times 10^{-3} t) \Longrightarrow t = 500^{\circ} C$$
.

**88.** (a) 
$$i = 6 \times 10^{15} \times 1.6 \times 10^{-19} = 0.96 mA.$$

**89.** (a) 
$$i = \frac{ne}{t} \Longrightarrow 16 \times 10^{-3} = \frac{n \times 1.6 \times 10^{-19}}{1} \Longrightarrow n = 10^{17}$$

**90.** (d) 
$$R = \frac{V}{i} = \frac{100 \pm 0.5}{10 \pm 0.2} = 10 \pm 0.25 \,\Omega$$
.

91. (a) 
$$R = \frac{V}{i} = \rho \frac{l}{A} \Rightarrow \frac{2}{4} = \rho \frac{50 \times 10^{-2}}{(1 \times 10^{-3})^2} \Rightarrow \rho = 1 \times 10^{-6} \Omega m$$
  
92. (c)

**93.** (b) 
$$i = \frac{V}{R} = \frac{Q}{t} \Rightarrow Q = \frac{Vt}{R} = \frac{20 \times 2 \times 60}{10} = 240 C$$

**94.** (a) 
$$R \propto l^2 \Rightarrow \frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2 \Rightarrow \frac{R}{R_2} = \left(\frac{l}{l/2}\right)^2 = 4 \Rightarrow R_2 = \frac{R}{4}$$
.

95. (b)

**96.** (b) 
$$V_d = \frac{i}{neA} = \frac{40}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}}$$
  
= 2.5 × 10<sup>-3</sup> m/sec.

97. (c) 
$$V_d = \frac{i}{nAe} = \frac{5.4}{8.4 \times 10^{28} \times 10^{-6} \times 1.6 \times 10^{-19}}$$
  
=  $0.4 \times 10^{-3} m/sec = 0.4 mm/sec$ .

**98.** (a) 
$$\frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2 \implies \frac{10}{R_2} = \left(\frac{5}{20}\right)^2 = \frac{1}{16} = R_2 = 160\Omega.$$

(c)  $R \propto \frac{1}{\tau}$ ; where  $\tau$  = Relaxation time. 99.

When lamp is switched on, temperature of filament increase, hence  $\tau$  decrease so *R* increases

**100.** (d) 
$$R = 91 \times 10^2 \approx 9.1 k\Omega$$
.

(c) 101. (a) 102.

103. (d) 
$$R \propto \frac{l^2}{m} \Rightarrow R_1 : R_2 : R_3 = \frac{l_1^2}{m_1} : \frac{l_2^2}{m_2} : \frac{l_3^2}{m_3}$$
  
 $\Rightarrow R_1 : R_2 : R_3 = \frac{9}{1} : \frac{4}{2} : \frac{1}{3} = 27 : 6 : 1.$ 

104. (b) 
$$n = \frac{1 \times 10^{-3}}{1.6 \times 10^{-19}} = 6.25 \times 10^{15}$$
.  
105. (b)  $v_{i} = \frac{i}{1.6 \times 10^{-19}} \Rightarrow v_{i} \propto \frac{i}{1.6} \Rightarrow \frac{v}{1.6} = \frac{i}{1.6} \times \left(\frac{r_{2}}{1.6}\right)^{2} \Rightarrow v_{i}$ 

**105.** (b) 
$$v_d = \frac{l}{ne\pi r^2} \Rightarrow v_d \propto \frac{l}{r^2} \Rightarrow \frac{v}{v'} = \frac{l_1}{l_2} \times \left(\frac{r_2}{r_1}\right) \Rightarrow v' = \frac{v}{2}.$$

106. (d) 
$$\frac{R_1}{R_2} = \left(\frac{r_2}{r_1}\right)^4 \implies \frac{R}{R_2} = \left(\frac{3r/4}{r}\right)^4 = \frac{81}{256} = R_2 = \frac{256}{81}R_2$$

107. (d)

**108.** (a) 
$$v_d = \frac{i}{nAe} = \frac{8}{8 \times 10^{28} \times (2 \times 10^{-3})^2 \times 1.6 \times 10^{-19}}$$
  
= 0.156×10<sup>-3</sup> m/sec.

109. (d) Specific resistance doesn't depend upon length and area.

110. (d) Heating effect of current.

**m.** (d) 
$$l = \frac{R\pi r^2}{\rho} = \frac{4.2 \times 3.14 \times (0.2 \times 10^{-3})^2}{48 \times 10^{-8}} = 1.1m$$

112. (d) For conductors, resistance  $\propto$  Temperature and for semiconductor, resistance  $\propto \frac{1}{\text{Temperatur e}}$ 

(a) If suppose initial length  $l_1 = 100$  then  $l_2 = 100 + 100 = 200$ 113.

$$\frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2 = \left(\frac{100}{200}\right)^2 \implies R_2 = 4R_1$$
$$\frac{\Delta R}{R} \times 100 = \frac{R_2 - R_1}{R_1} \times 100 = \frac{4R_1 - R_1}{R_1} \times 100 = 300\%.$$

Ammeter is always connected in series and Voltmeter is always 114. (a) connected in parallel.

115. (c) Same mass, same material *i.e.* volume is same or AI = constant

Also, 
$$R = \rho \frac{l}{A} \Rightarrow \frac{R_1}{R_2} = \frac{l_1}{l_2} \times \frac{A_2}{A_1} = \left(\frac{A_2}{A_1}\right)^2 \left(\frac{d_2}{d_1}\right)^4$$
  
$$\Rightarrow \frac{24}{R_2} = \left(\frac{d}{d/2}\right)^4 = 16 \Rightarrow R_2 = 1.5\Omega.$$

116. (a)  $I = n_e q_e + n_p q_p = 1mA$  towards right

 $(a) \;\;$  As steady current is flowing through the conductor, hence the 117. number of electrons entering from one end and outgoing from the other end of any segment is equal. Hence charge will be zero.

**118.** (b) Conductance 
$$C = \frac{1}{R} = \frac{A}{\rho l} \Longrightarrow C \propto \frac{1}{l}$$

**119.** (c) 
$$i = \frac{dQ}{dt} \Rightarrow dQ = idt \Rightarrow Q = \int_{t_1}^{t_2} idt = \int_0^5 (1.2t+3)dt$$
  
 $= \left[\frac{1.2t^2}{2} + 3t\right]_0^5 = 30C$ 

120. (a) In stretching, 
$$\frac{R_2}{R_1} = \left(\frac{r_1}{r_2}\right)^4 \Rightarrow \frac{R_2}{R} = \left(\frac{2}{1}\right)^4 \Rightarrow R_2 = 16R$$

$$121. \quad (d) \qquad R' = n^2 R \Longrightarrow R' = 16R$$

122. (a)

| Significant                                 | Multiplier |       |
|---------------------------------------------|------------|-------|
| Brown                                       | Black      | Brown |
| 1                                           | 0          | 10    |
| $\therefore R = 10 \times 10^{\circ} = 100$ | Ω          | •     |

$$\therefore R = 10 \times 10 = 100 \ \Omega$$

126. (b) 
$$R \propto \frac{l}{r^2} \Rightarrow \frac{R_2}{R_1} = \frac{l_2}{l_1} \times \frac{r_1^2}{r_2^2} = \left(\frac{2}{1}\right) \times \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$
  
 $\Rightarrow R_2 = \frac{R_1}{r_2}$ , specific resistance doesn't depend upon

length, , 2 and radius.

127. (c) By using 
$$v_d = \frac{i}{neA} = \frac{100}{10^{28} \times 1.6 \times 10^{-19} \times \frac{\pi}{4} \times (0.02)^2}$$

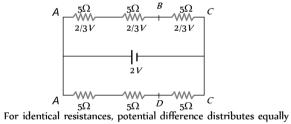
$$= 2 \times 10^{-4} m / sec$$

**128.** (a) 
$$R \propto \frac{l}{r^2}$$
. For highest resistance  $\frac{l}{r^2}$  should be maximum which is correct for option (a)

Red, brown, orange, silver red and brown represents the first 129. (a) two significant figures.

| Signific | ant figures | Multiplier      | Tolerance |  |
|----------|-------------|-----------------|-----------|--|
| Red      | Brown       | Orange          | Silver    |  |
| 2        | 1           | 10 <sup>,</sup> | ± 10%     |  |

 $\therefore R = 21 \times 10^3 \pm 10\%$ 


130. (c) In stretching 
$$R \propto l^2 \Rightarrow \frac{R_2}{R_1} = \frac{l_2^2}{l_1^2} \Rightarrow \frac{R_2}{R_1} = \left(\frac{2}{1}\right)^2$$
  
 $\Rightarrow R_2 = 4R_1$ . Change in resistance  $= R_2 - R_1 = 3R_1$   
Now,  $\frac{\text{Change in resistance}}{\text{Original resistance}} = \frac{3R_1}{R_1} = \frac{3}{1}$   
131. (c)  $\frac{R_1}{R_2} = \left(\frac{l_1}{l_2}\right)^2$ , If  $l_1 = 100$  then  $l = 110$   
 $\Rightarrow \frac{R_1}{R_2} = \left(\frac{100}{110}\right)^2 \Rightarrow R_2 = 1.21R_1$   
% change  $\frac{R_2 - R_1}{R_1} \times 100 = 21\%$ 

**132.** (b)

**133.** (c) Resistance 
$$= \rho \frac{l}{A}$$
  
 $\therefore \frac{R_1}{R_2} = \frac{\rho_1}{\rho_2} \times \frac{l_1}{l_2} \times \frac{A_2}{A_1} = \frac{2}{3} \times \frac{3}{4} \times \frac{5}{4} = \frac{5}{8}$ 

## **Grouping of Resistances**

(c) The given circuit can be redrawn as follows 1.



among all. Hence potential difference across each resistance is  $\frac{2}{3}V$ , and potential difference between A and B is  $\frac{4}{3}V$ .

- 2. (d) Equivalent resistance of parallel resistors is always less than any of the member of the resistance system.
- Each part will have a resistance r = R / 103. (a)

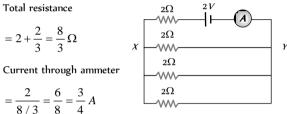
Let equivalent resistance be  $r_{R_1}$  then

4. (c) 
$$R_{\text{equivalent}} = \frac{(30+30)30}{(30+30)+30} = \frac{60\times30}{90} = 20\Omega$$
  
$$\therefore i = \frac{V}{R} = \frac{2}{20} = \frac{1}{10} \text{ ampere}$$

(b) Resistance of parallel group  $=\frac{R}{2}$ 5.  $\therefore$  Total equivalent resistance =  $4 \times \frac{R}{2} = 2R$ 

- (c) Resistance of 1 *ohm* group  $= \frac{R}{n} = \frac{1}{3}\Omega$ 6. This is in series with  $\frac{2}{3}\Omega$  resistor.  $\therefore$  Total resistance  $=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}\Omega=1\Omega$
- (c) Lowest resistance will be in the case when all the resistors are 7. connected in parallel.

$$\frac{1}{R} = \frac{1}{0.1} + \frac{1}{0.1} \dots 10 \text{ times}$$
$$\frac{1}{R} = 10 + 10 \dots 10 \text{ times}$$
$$\frac{1}{R} = 100 \text{ i.e. } R = \frac{1}{100} \Omega$$


(b) Resistance across 
$$XY = \frac{2}{3}\Omega$$

Total resistance

8.

9.

11.

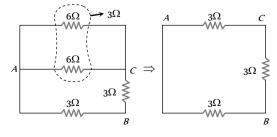


(a) Equivalent resistance of the combination

**10.** (b) In parallel, 
$$x = \frac{R}{n} - R$$

In series, 
$$R + R + R$$
 ....  $n$  times =  $nR = n (nx) = nx$   
(d) The circuit reduces to

$$3\Omega \underbrace{\$}_{A} \underbrace{\$}_{AB} = \frac{9 \times 6}{9 + 6} = \frac{9 \times 6}{15} = \frac{f \Re}{5} = 3.6\Omega$$


20

(d) As resistance  $\propto$  Length 12.

Resistance of each arm 
$$=\frac{12}{3}=4\Omega$$

$$\Rightarrow R_{\text{effective}} = \frac{4 \times 8}{4 + 8} = \frac{8}{3} \Omega$$

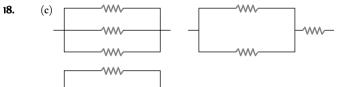
(b) Given circuit is equivalent to 13.



So the equivalent resistance between points *A* and *B* is equal to  $R = \frac{6 \times 3}{2} = 2\Omega$ 

$$1 = \frac{1}{6+3} = 2$$

- 14. (d) Potential difference across all resistors in parallel combination is same.
- **15.** (b) Current through each arm DAC and DBC = 1A

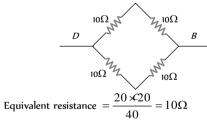

$$V_D - V_A = 2$$
 and  $V_D - V_B = 3 \implies V_A - V_B = +1V$ 

16. (d) 
$$R_{acc} = r + \frac{3r}{2} = \frac{3r}{2}$$

17. (c) If resistances are  $R_1$  and  $R_2$  then  $\frac{R_1R_2}{R_1 + R_2} = \frac{6}{8}$  .....(i)

Suppose  $R_2$  is broken then  $R_1 = 2\Omega$  .....(ii)

On solving equations (i) and (ii) we get  $R_2=6/5\,\Omega$ 




- 19. (b) Because all the Yamps have same Witage.
- **20.** (d)  $R_{\text{series}} = R_1 + R_2 + R_3 + \dots$

21. (a) Current supplied by cell 
$$i = \frac{2}{2+3+5} = \frac{1}{5}A$$

So potential difference across 3 will be 
$$V = \frac{3 \times 1}{5} = 0.6V$$

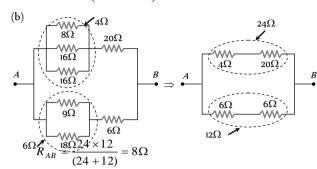
**22.** (a) According to the problem, we arrange four resistance as follows A



23. (b) 
$$R_1 + R_2 = 9$$
 and  $\frac{R_1R_2}{R_1 + R_2} = 2 \implies R_1R_2 = 18$   
 $R_1 - R_2 = \sqrt{(R_1 + R_2)^2 - 4R_1R_2} = \sqrt{81 - 72} = 3$ 

$$R_1 - R_2 = \sqrt{(R_1 + R_2)^2 - 4R_1R_2} = \sqrt{81 - 72} = R_1 = 6\Omega, R_2 = 3\Omega$$

24. (b) 
$$i_1 + i_2 = \frac{1.5}{3/2} = 1 amp$$


$$\frac{i_1}{i_2} = \frac{3}{3} \implies i_1 = i_2 \quad \therefore \quad i_2 = 0.5A = i_1$$

**25.** (c) 
$$V_p - V_q = \left(\frac{6}{3} + \frac{12 \times 6}{12 + 6}\right)(0.5) = (2 + 4)(0.5) = 3V$$



30.

31.



**28.** (d) Let the resistance of the wire be R, then we know that resistance is proportional to the length of the wire. So each of the four wires will have R/4 resistance and they are connected in parallel. So the effective resistance will be

$$\frac{1}{R_1} = \left(\frac{4}{R}\right) 4 \Longrightarrow R_1 = \frac{R}{16}$$

**29.** (d) Equivalent resistance  $=\frac{4 \times 4}{4 + 4} + \frac{6 \times 6}{6 + 6} = 5 ohm$  So the

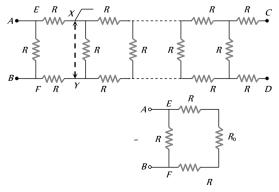
current in the circuit  $=\frac{20}{5}=4$  *ampere* Hence the current flowing through each resistance = 2 *ampere*.

(c) Let the resultant resistance be *R*. If we add one more branch, then the resultant resistance would be the same because this is an infinite sequence.

$$A \stackrel{R_1 = 1\Omega}{\longrightarrow} X$$

$$A \stackrel{R_2 = 2\Omega}{\longrightarrow} R$$

$$R_2 = 2\Omega \stackrel{Y}{\longrightarrow} R$$


$$R \stackrel{R_2 = 2\Omega}{\longrightarrow} R$$

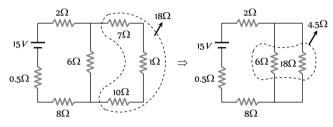
$$R \stackrel{Y}{\longrightarrow} R$$

$$R \stackrel{Y}{\rightarrow} R$$

 $\Rightarrow R^2 - R - 2 = 0 \Rightarrow R = -1$  or R = 2 ohm

(b) Cut the series from XY and let the resistance towards right of XY be  $R_0$  whose value should be such that when connected across *AB* does not change the entire resistance. The combination is reduced to as shown below.




The resistance across EF, =  $R_{EF} = (R_0 + 2R)$ 

Thus 
$$R_{AB} = \frac{(R_0 + 2R)R}{R_0 + 2R + R} = \frac{R_0 R + 2R^2}{R_0 + 3R} = R_0$$
  
 $\Rightarrow R_0^2 + 2RR_0 - 2R^2 + 0 \Rightarrow R_0 = R(\sqrt{3} - 1)$ 

**32.** (d) The last two resistance are out of circuit. Now  $8\Omega$  is in parallel with  $(1 + 1 + 4 + 1 + 1)\Omega$ .

$$\therefore R = 8\Omega || \quad 8\Omega = \frac{8}{2} = 4\Omega \implies R_{AB} = 4 + 2 + 2 = 8\Omega$$

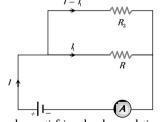
**33.** (a) The given circuit can be simplified as follows



On further solving equivalent resistance  $R = 15 \Omega$ 

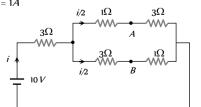
Hence current from the battery  $i = \frac{15}{15} = 1A$ 

 $\textbf{34.} \qquad (b) \quad \text{The circuit will be as shown} \\$ 


$$i = \frac{10}{5} = 2A$$

10*V* 

**35.** (c) The current in the circuit  $=\frac{8}{5+1}=\frac{4}{3}$ 


Now 
$$V_C - V_E = \frac{4}{3} \times 1 \implies V_E = -\frac{4}{3} V$$

**36.** (d) According to the figure,  $(I - I_1)R_2 = I_1R$ 



Only two values satisfying the above relation are  $\frac{1}{2}$  and *R* 

- **37.** (d) Effective resistance between the points *A* and *B* is  $R = \frac{32}{12} = \frac{8}{3} \Omega$
- **38.** (b)  $R_{eq} = 5\Omega$ , Current  $i = \frac{10}{5} = 2A$  and current in each branch = 1A



 $\begin{array}{ll} \mbox{Potential difference between } C \mbox{ and } A, \\ V_C - V_A = 1 \times 1 = 1 V & ......(i) \\ \mbox{Potential difference between } C \mbox{ and } B, \\ V_C - V_B = 1 \times 3 = 3 V & ......(ii) \\ \mbox{On solving (i) and (ii) } V_A - V_B = 2 \ volt \\ \end{array}$ 

hot Trick : 
$$(V_A - V_B) = \frac{i}{2}(R_2 - R_1) = \frac{2}{2}(3 - 1) = 2V$$

**39.** (c)  $\frac{1}{R} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{3}{1} \implies R = \frac{1}{3} ohm$ Now such three resistance are joined in series, hence total

$$R = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 10hm$$

**40.** (b) To obtain minimum resistance, all resistors must be connected in parallel.

Hence equivalent resistance of combination  $=\frac{r}{10}$ 

**41.** (a) For same material and same length

$$\frac{R_2}{R_1} = \frac{A_1}{A_2} = \frac{3}{2} \implies R_2 = 3R_1$$

Resistance of thick wire  $R_1 = 10\Omega$ 

 $\therefore$  Resistance of thin wire  $R_2 = 30\Omega$ 

$$R = 2 + 2 + \frac{2 \times R}{2 + R} \implies 2R + R^2 = 8 + 4R + 2R$$
$$\implies R^2 - 4R - 8 = 0 \implies R = \frac{4 \pm \sqrt{16 + 32}}{2} = 2 \pm 2\sqrt{3}$$

*R* cannot be negative, hence  $R = 2 + 2\sqrt{3} = 5.46\Omega$ 

3. (b) P.d. across the circuit 
$$= 1.2 \times \frac{6 \times 4}{6+4} = 2.88 \text{ volt}$$
  
Current through 6 *ohm* resistance  $= \frac{2.88}{6} = 0.48 \text{ A}$ 

**44.** (d) Three resistances are in parallel.

$$\therefore \quad \frac{1}{R'} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{3}{R}$$
  
The equivalent resistance  $R' = \frac{R}{3}\Omega$ 

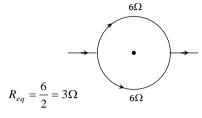
5. (c) Similar to Q. No. 30. By formula 
$$R = R_1 + \frac{R_2 \times R_3}{R_2 + R_3}$$

$$\therefore R = 1 + \frac{1 \times R}{1 + R} \implies R^2 + R = 1 + R + R$$
$$\implies R^2 - R - 1 = 0 \text{ or } R = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$
Since *R* cannot be negative, hence  $R = \frac{1 + \sqrt{5}}{2} \Omega$ 

**46.** (d)  $R \propto l$ 

42.

4


4

Hence every new piece will have a resistance  $\frac{R}{10}$ . If two pieces are connected in series, then their resistance 2R R

$$=\frac{10}{10}=\frac{10}{10}$$

If 5 such combinations are joined in parallel, then net resistance  $=\frac{R}{5\times5}=\frac{R}{25}$ 

**47.** (c)



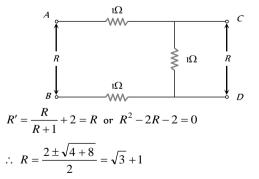
**48.** (b) Current in the given circuit  $i = \frac{50}{(5+7+10+3)} = 2A$ 

Potential difference between A and B  $V_A - V_B = 2 \times 12$  $\Rightarrow V_A - 0 = 24V \Rightarrow V_A = 24V$ 

**49.** (b) If all are in series then  $R_{eq} = 12 \Omega$ 

If all are in parallel then  $R_{eq} = \frac{4}{3}\Omega = 1.33\Omega$ 

If two are in series then parallel with third,  $R_{eq} = \frac{8}{3} = 2.6 \Omega$ If two are in parallel then series with third,  $R_{eq} = 6 \Omega$ 


**50.** (d) Equivalent external resistance of the given circuit  $R_{eq} = 4 \Omega$ 

Current given by the cell  $i = \frac{E}{R_{eq} + r} = \frac{10}{(4+1)} = 2 A$ Hence,  $(V_A - V_B) = \frac{i}{2} \times (R_2 - R_1) = \frac{2}{2}(2-4) = -2 V.$ 

**51.** (d) Resistance of each part will be  $\frac{R}{n}$ ; such *n* parts are joined in

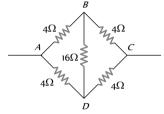
parallel so 
$$R_{eq} = \frac{R}{n^2}$$

**52.** (c) Let equivalent resistance between *A* and *B* be *R*, then equivalent resistance between *C* and *D* will also be *R*.



53. (d)  $6\Omega$  and  $6\Omega$  are in series, so effective resistance is  $12\Omega$  which is in parallel with  $3\Omega$ , so

$$\frac{1}{R} = \frac{1}{3} + \frac{1}{12} = \frac{15}{36} \implies R = \frac{36}{15}$$


$$I = \frac{V}{R} = \frac{4.8 \times 15}{36} = 2A$$

**54.** (a) Equivalent resistance of the circuit 
$$R = \frac{3}{2}\Omega$$

$$\therefore$$
 Current through the circuit  $i = \frac{V}{R} = \frac{3}{3/2} = 2A$ 

55. (c) 
$$R_{\text{max}} = nR$$
 and  $R_{\text{min}} = R/n \implies \frac{R_{\text{max}}}{R_{\text{min}}} = n^2$ 

56. (d) According to the principle of Wheatstone's bridge, the effective resistance between the given points is  $4\Omega$ .



**57.** (c)

**58.** (c) Current through  $6\Omega$  resistance in parallel with  $3\Omega$  resistance = 0.4 A

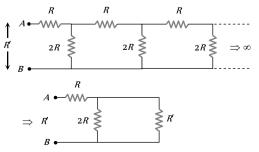
So total current = 0.8 + 0.4 = 1.2 A

Potential drop across  $4\Omega = 1.2 \times 4 = 4.8 V$ 

- **59.** (d) Two resistances in series are connected parallel with the third. Hence  $\frac{1}{R_p} = \frac{1}{4} + \frac{1}{8} = \frac{3}{8} \implies R_p = \frac{8}{3}\Omega$
- **60.** (c) Resistances at *C* and *B* are not in the circuit. Use laws of resistances in series and parallel excluding the two resistance.
- **61.** (d) After simplifying the network, equivalent resistance obtained between A and B is  $8\Omega$ .
- **62.** (c) The circuit consists of three resistances (2*R*, 2*R* and *R*) connected in parallel.
- **63.** (d) Resistance across the battery is

$$\frac{1}{R_p} = \frac{1}{3} + \frac{1}{6} = \frac{2+1}{6} = \frac{3}{6} \implies R_p = 2\Omega \implies I = \frac{2}{2} = 1A$$

**64.** (c) The voltmeter is assumed to have infinite resistance. Hence  $(1 + 2 + 1) + 4 = 8\Omega$ .


**65.** (c) 
$$R' = \frac{R}{n} = \frac{1}{10} = 0.1\Omega$$

66. (c) The given circuit can be redrawn as follows

$$\begin{array}{c} 2\Omega \\ \bullet \\ \bullet \\ 2\Omega \\ 2\Omega \\ 2\Omega \\ \Rightarrow R_{eq} = 5\Omega . \end{array} \begin{array}{c} 2\Omega \\ 2\Omega \\ 2\Omega \\ 2\Omega \\ 2\Omega \end{array}$$

**67.** (b) 
$$R_{AB} = R_1 + \frac{R_2 R_3}{R_2 + R_3} + R_4 = 2 + \frac{4 \times 4}{4 + 4} + 2 = 6\Omega$$

**68.** (c) Let equivalent resistance between *A* and *B* is *R*, so given circuit can be reduced as follows



$$R' = R + \frac{2R \times R'}{(2R+R')} \Longrightarrow {R'}^2 - RR' - 2R^2 = 0$$

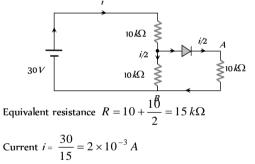
On solving the equation we get R' = 2R.

**69.** (d) 
$$R_{AB} = \frac{R}{3} + R = \frac{2}{3} + 2 = \frac{8}{3} = 2\frac{2}{3}\Omega$$
.  
**70.** (b)  $i = \frac{E}{R+r} \Rightarrow 0.5 = \frac{10}{R+3} \Rightarrow 10 = 0.5R + 1.5 \Rightarrow R = 17\Omega$ .

(a) Equivalent resistance  $R = 4 + \frac{3 \times 6}{3 + 6} = 6\Omega$  and main current 71.

$$i = \frac{E}{R} = \frac{3}{6} = 0.5A$$

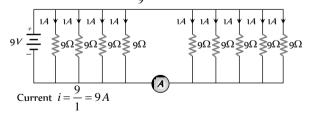
Now potential difference across the combination of  $3\Omega$  and


$$6\Omega, V = 0.5 \times \left(\frac{3 \times 6}{3 + 6}\right) = 1 Volt$$

The same potential difference, also develops across  $3\Omega$ resistance.

72. (c)

74.


(1)

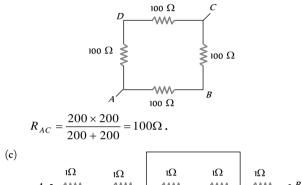


Hence, potential difference between A and B

$$V = \left(\frac{2 \times 10^{-3}}{2}\right) \times 10 \times 10^{3} = 10 \text{ Volt}$$

(a) Equivalent resistance  $R = \frac{9}{9} = 1\Omega$ 73.



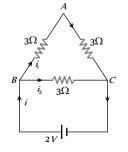

Current passes through the ammeter = 5A. (b) The figure can be drawn as follows



$$\Rightarrow R_{AB} = 5\Omega.$$
(a)  $R_1 = \frac{\rho_1 l_1}{A}$  and  $R_2 = \frac{\rho_2 l_2}{A}$ . In series  $R_{eq} = R_1 + R_2$ 

$$\frac{\rho_{eq.}(l_1 + l_2)}{A} = \frac{\rho_1 l_1}{A} + \frac{\rho_2 l_2}{A} \Rightarrow \rho_{eq} = \frac{\rho_1 l_1 + \rho_2 l_2}{l_1 + l_2}.$$

77.




$$R_{AB} = 2 + \frac{1}{3} = 2\frac{1}{3}\Omega.$$

78. (b) 
$$\rho$$
-same,  $l$ -same,  $A_2 = \frac{1}{4}A_1$  (as  $r_2 = \frac{r_1}{2}$ )  
By using  $R = \rho \frac{l}{A} \Rightarrow \frac{R_1}{R_2} = \frac{A_2}{A_1} \Rightarrow \frac{R_1}{8} = \frac{1}{4} \Rightarrow R_1 = 2\Omega$   
Hence,  $R_{eq} = \frac{R_1R_2}{R_1 + R_2} = \frac{2 \times 8}{(2+8)} = \frac{8}{5}\Omega$ .

(c) The given circuit can be simplified as follows 79.

$$13R + R^2 = 69 + 13R \implies R = \sqrt{69\Omega}$$



Equivalent resistance 
$$R = \frac{3 \times (3+3)}{3+(3+3)} = 2\Omega$$
  
Current  $i = \frac{2}{2} = 1A$ . So,  $i_1 = 1 \times \left(\frac{3}{3+6}\right) = \frac{1}{3}A$ .

Potential difference between *A* and 
$$B = \frac{1}{3} \times 3 = 1$$
 volu

**81.** (a) 
$$\frac{1}{R_{eq}} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{4+2+1}{8} \implies R_{eq} = \frac{8}{7}\Omega$$

(b) The given figure is balance wheat stone bridge. 82.

83. (b) 
$$\frac{7}{12} = \frac{1}{4} + \frac{1}{R} \implies R = 3\Omega$$

84. Suppose resistance of wires are  $R_1$  and  $R_2$  then (d)


$$\frac{6}{5} = \frac{R_1 R_2}{R_1 + R_2}$$
. If  $R_2$  breaks then  $R_1 = 2\Omega$ 

Hence, 
$$\frac{6}{5} = \frac{2 \times R_2}{2 + R_2} \Longrightarrow R_2 = 3\Omega$$
.

(d) Potential difference across PQ i.e. p.d. across the resistance of 85. 20 $\Omega$ , which is  $V = i \times 20$ 

and 
$$i = \frac{48}{(100 + 100 + 80 + 20)} = 0.16A$$
  
 $\therefore V = 0.16 \times 20 = 3.2V.$ 

86. (a)



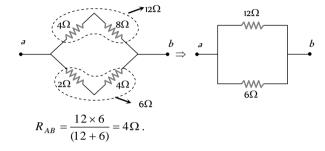
$$R_{AB} = \frac{2 \times 2}{2 + 2} = 1\Omega.$$

- 88. (a) Given circuit is a balance Wheatstone bridge circuit.
- (b) All of three resistance are in parallel So,  $R' = R/n = \frac{R}{3}$ . 89.

**90.** (b) 
$$R_{eq} = R_1 + R_2 \Rightarrow \frac{\rho_{eff.2l}}{A} = \frac{\rho_1 l}{A} + \frac{\rho_2 l}{A} \Rightarrow \rho_{eff.} = \frac{\rho_1 + \rho_2}{2}$$
.

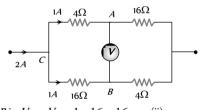
(b) Two resistance are in ratio 1:2 and third resistance is R91.

So, 
$$\frac{1}{x} + \frac{1}{2x} + \frac{1}{R} = 1 \implies x = \frac{3}{2} \left( \frac{R}{R-1} \right)$$


As, resistance is not fractional 
$$\Rightarrow \frac{R}{R-1} = 2$$

$$\Rightarrow x = 3, R = 2, 2x = 6$$

Hence, the value of largest resistance =  $6\Omega$ .


**92.** (c) 
$$R = \frac{(3+3)\times 3}{(3+3)+3} = 2\Omega \Longrightarrow i = \frac{3}{2} = 1.5A$$
.

Given circuit is a balanced Wheatstone bridge circuit, hence it 93. (b) can be redrawn as follows



- (d) The given circuit is a balanced wheatstone bridge circuit. Hence 94. potential difference between A and B is zero.
  - In the following circuit potential difference between (a)

C and A is 
$$V_C - V_A = 1 \times 4 = 4$$
 .....(i)



 $C \text{ and } B \text{ is } V_C - V_B = 1 \times 16 = 16$  .....(ii) On solving equations (i) and (ii) we get  $V_A - V_B = 12V.$ 

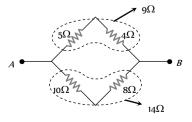
96. (d) As resistance  $\infty$  Length

95.

$$\therefore \text{ Resistance of each arm } = \frac{12}{3} = 4 \Omega$$

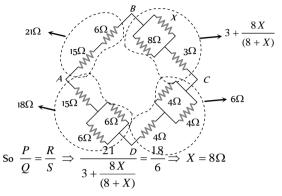
$$\therefore R_{effective} = \frac{4 \times 8}{4 + 8} = \frac{8}{3} \Omega$$

$$12$$


**97.** (b) 
$$i = \frac{12}{(1+1)+0.4} = 5A.$$

(b) By balanced Wheatstone bridge condition  $\frac{16}{X} = \frac{4}{0.5}$ 98.

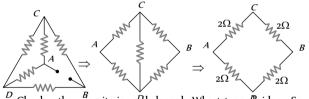
$$\Rightarrow X = \frac{8}{4} = 2 \Omega$$


**99.** (d) Current through 
$$2\Omega = 1.4 \left\{ \frac{(25+5)}{(10+2)+(25+5)} \right\} = 1A$$

100. Since the given bridge is balanced, hence there will be no (a) current through  $9\Omega$  resistance. This resistance has no effect and must be ignored in the calculations.

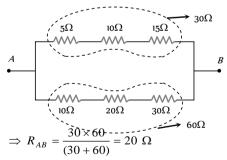


$$R_{AB} = \frac{9 \times 18}{27} = 6 \,\Omega$$

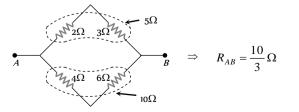

101. (c) Potential difference between B and D is zero, it means Wheatstone bridge is in balanced condition



This is a balanced Wheatstone bridge. Therefore no current will 102. (a) flow from the diagonal resistance  $10\,\Omega$ 


: Equivalent resistance 
$$= \frac{(10+10) \times (10+10)}{(10+10) + (10+10)} = 10 \Omega$$

- 103. (b) This is a balanced Wheatstone bridge circuit. So potential at B and D will be same and no current flows through 4Rresistance.
- 104. (d) The equivalent circuits are as shown below




Clearly, the  $\stackrel{B}{\operatorname{circuit}}$  is  $\stackrel{D}{\operatorname{obalanced}}$  Wheatstone Bridge. So effective resistance between A and B is  $2\Omega$ .

105. (a) By the concept of balanced Wheatstore bridge, the given circuit can be redrawn as follows



The given circuit is a balanced Wheatstone bridge type, hence 106. (a) it can be simplified as follows



107. (b) Let current through  $5 \Omega$  resistance be *i*. Then

$$i \times 25 = (2.1 - i)10 \Rightarrow i = \frac{10}{35} \times 2.1 = 0.6 A$$

108. (d) Let the value of shunt be r. Hence the equivalent resistance of branch containing *S* will be  $\frac{Sr}{S+r}$ 

n balance condition, 
$$\frac{P}{O} = \frac{Sr/(S+r)}{R}$$
. This gives  $r = 8\Omega$ 

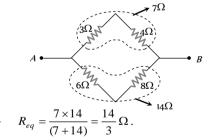
109.

Between A and C circuit becomes equivalent to balanced Wheatstone bridge so  $R_{AC} = R$ .

**110.** (b) 
$$i \propto \frac{1}{R}$$

112.

115.


(d) Equivalent resistance between P and Q111.

$$\frac{1}{R_{PQ}} = \frac{1}{(6+2)} + \frac{1}{3} + \frac{1}{(4+12)} \implies R_{PQ} = \frac{48}{25}\Omega$$

Current between P and Q; i = 1.5ASo, potential difference between P and Q

$$V_{PQ} = 1.5 \times \frac{48}{25} = 2.88 V \,.$$

- Given circuit is a balanced Wheatstone bridge i.e. potential (c) difference between B and D is zero. Hence, no current flows between B and D.
- The given circuit is a balanced Wheatstone bridge, hence it can 113. (a) be redrawn as follows



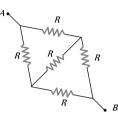
For a balance Wheatstone bridge. 114. (a)

> . n

$$\frac{A}{B} = \frac{D}{C} \Rightarrow \frac{10}{5} \neq \frac{4}{4} \text{ (Unbalanced)}$$
$$\frac{A'}{B} = \frac{D}{C} \Rightarrow \frac{A'}{5} = \frac{4}{4} \Rightarrow A' = 5\Omega$$

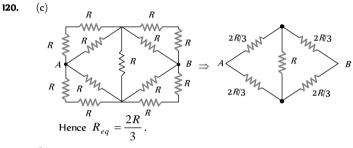
 $A'(5\Omega)$  is obtained by connecting a  $10\,\Omega$  resistance in parallel with A.

- Given circuit is a balanced Wheatstone bridge circuit. So there (d) will be no change in equivalent resistance. Hence no further current will be drawn.
- 116. No current flow through vertical resistances (a)


$$A \xrightarrow{3\Omega}{3\Omega} 3\Omega \xrightarrow{3\Omega}{3\Omega} B \xrightarrow{A} \xrightarrow{9\Omega}{} B$$

$$A \xrightarrow{3\Omega}{3\Omega} 3\Omega 3\Omega 3\Omega \xrightarrow{B} A \xrightarrow{9\Omega}{} B$$

$$A \xrightarrow{3\Omega}{3\Omega} 3\Omega 3\Omega \xrightarrow{B} A \xrightarrow{9\Omega}{} B$$


$$R_{AB} = \frac{9}{2} \Omega.$$

- **117.** (d) The given circuit is a balanced Wheatstone bridge.
- **118.** (c) The given circuit can be redrawn as follows



Equivalent resistance between A to B is R.

119. (d) Equivalent resistance of the given circuit is  $\,3\Omega$  .



**121.** (b)

**122.** (b) For balanced Wheatstone bridge  $\frac{P}{Q} = \frac{R}{S}$ 

$$\Rightarrow \frac{12}{(1/2)} = \frac{x+6}{(1/2)} \Rightarrow x = 6\Omega$$

- 123. (b) For maximum energy equivalent resistance of combination should be minimum.
- **124.** (c) For first balancing condition  $\frac{10 + R_1}{R_2} = \frac{50}{50}$ 
  - $\Rightarrow$   $R_2 = 10 + R_1$ . For second balancing condition

$$\frac{R_1}{R_2} = \frac{40}{60} \Rightarrow \frac{R_1}{10 + R_1} = \frac{2}{3} \Rightarrow R_1 = 20\,\Omega$$

**125.** (b) Given  $R = 6\Omega$ . When resistor is cut into two equal parts and connected in parallel, then

$$R_{eq} = \frac{R/2}{2} = \frac{R}{4} = \frac{6}{4} = 1.5 \,\Omega$$

**126.** (a) Resistance between P and Q

$$R_{PQ} = R \parallel \left(\frac{R}{3} + \frac{R}{2}\right) = \frac{R \times \frac{5}{6}R}{R + \frac{5}{6}R} = \frac{5}{11}R$$

Resistance between Q and R

$$R_{QR} = \frac{R}{2} || \left( R + \frac{R}{3} \right) = \frac{\frac{R}{2} \times \frac{4R}{3}}{\frac{R}{2} + \frac{4R}{3}} = \frac{4}{11}R$$

Resistance between P and R

$$R_{PR} = \frac{R}{3} || \left(\frac{R}{2} + R\right) = \frac{\frac{R}{3} \times \frac{3R}{2}}{\frac{R}{3} + \frac{3R}{2}} = \frac{3}{11}R$$

Hence it is clear that  $R_{PQ}$  is maximum.

**127.** (c) Given circuit can be redrawn as follows

$$6V = \frac{2\Omega}{6V} \Rightarrow \frac{15\Omega}{6V} \Rightarrow \frac{15\Omega}{15\Omega} \Rightarrow \frac{16V}{3\Omega} \Rightarrow \frac{16V}{15\Omega} \Rightarrow$$

131. (a) Equivalent resistance of the given network  $R_{eq} = 75 \,\Omega$ 

$$3V = \begin{matrix} i & R_{1}(50\Omega) & i_{2} \\ i_{1} & 60\Omega \leqslant R_{3} & \leqslant (30\Omega) \\ (50\Omega) \leqslant & & & \\ R_{5}(30\Omega) & & & \\ R_{5}(3$$

$$\therefore$$
 Total current through battery  $i = \frac{3}{75}$ 

$$i_1 = i_2 = \frac{3}{75 \times 2} = \frac{3}{150}$$

Current through 
$$R_4 = \frac{3}{150} \times \frac{60}{(30+60)} = \frac{3}{150} \times \frac{60}{90} = \frac{2}{150} A$$

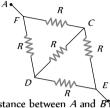
$$V_4 = i_4 \times R_4 = \frac{2}{150} \times 30 = \frac{2}{5} V = 0.4 V$$

**132.** (a) 
$$i = \frac{10}{1.5 + (1 \parallel 1)} = \frac{10}{1.5 + 0.5} = 5A$$

(c)

133.

**134.** (a) The equivalent resistance between C and D is


$$\frac{1}{R'} = \frac{1}{6} + \frac{1}{6} + \frac{1}{3} = \frac{2}{3} \text{ or } R' = \frac{3}{2} = 1.5 \,\Omega$$

Now the equivalent resistance between *A* and *B* as  $R' = 1.5 \Omega$ and  $2.5 \Omega$  are connected in series, so

$$R''=1.5+2.5=4\,\Omega$$

Now by ohm's law, potential difference between A and B is given by  $V_A - V_B = iR = 2 \times 4.0 = 8$  volt

(b) The given circuit can be redrawn as follows 135.



Equivalent resistance between A and  $B^{*}s^{B}R$  and

current 
$$i = \frac{V}{R}$$

136. (b) The given network is a balanced Wheatstone bridge. It's equivalent resistance will be  $R = \frac{18}{5} \Omega$ 

So current from the battery  $i = \frac{V}{R} = \frac{V}{18/5} = \frac{5V}{18}$ 

137. (a) 
$$\Rightarrow R_{AB} = \frac{R/2}{2} = \frac{R}{4}$$
  
 $A_{O}$   
 $R/2$   
 $R/2$ 

**138.** (b) 
$$i \propto \frac{1}{R} \Rightarrow \frac{i_1}{i_2} = \frac{R_2}{R_1} \Rightarrow \frac{5}{4} = \frac{(R+2)}{R} \Rightarrow R = 89$$

(c) In given circuit three resistance  $R_2, R_4$  and  $R_3$  are parallel. 139.

$$\frac{1}{R} = \frac{1}{R_2} + \frac{1}{R_4} + \frac{1}{R_3}$$

$$= \frac{1}{50} + \frac{1}{50} + \frac{1}{75}$$

$$= \frac{75 + 75 + 50}{50 \times 75}$$

$$R = \frac{50 \times 75}{75 + 75 + 50} = \frac{50 \times 75}{200} = \frac{75}{4} \Omega = 18.75\Omega$$

This resistance is in series with  $R_1$ 

$$R_{\text{resultant}} = R_1 + R = 100 + 18.75 = 118.75\Omega$$

(b) When resistances  $4\Omega$  and  $12\Omega$  are connected in series 140.  $= 4 + 12 = 16\Omega$ 

When these resistance are connected in parallel.

$$\frac{1}{R_P} = \frac{1}{4} + \frac{1}{12} \implies R_P = \frac{4 \times 12}{4 + 12} = \frac{4 \times 12}{16} = 3\Omega$$

141. (b) Since voltmeter records 5V, it means the equivalent. Resistance of voltmeter and 100  $\Omega$  must be 50, because in series grouping if resistances are equal, they share equal potential difference. It conclude that resistance of voltmeter must be 100  $\Omega$ .

# Kirchoff's Law, Cells

(b) For no current through galvanometer, we have

$$\left(\frac{E_1}{500+X}\right)X = E \implies \left(\frac{12}{500+X}\right)X = 2 \implies X = 100 \ \Omega$$

(d) Since  $E_1(10 V) > E_2(4 V)$ 2.

1.

5.

10.

11.

So current in the circuit will be clockwise.

Applying Kirchoff's voltage law

$$-1 \times i + 10 - 4 - 2 \times i - 3i = 0 \implies i = 1A(a \text{ to } b \text{ via } e)$$

$$\therefore \text{ Current } = \frac{V}{R} = \frac{10-4}{6} = 1.0 \text{ ampere}$$

- З. (c) For maximum power, external resistance = internal resistance.
- (a) 0.9  $(2 + r) = 0.3 (7 + r) \Longrightarrow 6 + 3r = 7 + r \Longrightarrow r = 0.5 \Omega$ 4.

$$= V + V = E \implies V = \frac{E}{2}$$

**6.** (b) Let the current in the circuit 
$$= i = \frac{V}{R}$$

Across the cell, 
$$E = V + ir \Rightarrow r = \frac{E - V}{i} = \frac{E - V}{V/R} = \left(\frac{E - V}{V}\right)R$$

7. (a) For maximum energy, we have External resistance of the circuit

= Equivalent internal resistance of the circuit *i.e.*  $R = \frac{r}{2}$ 

- Kirchhoff's first law is based on the law of conservation of 8. (a) charge
- 9. (b) Kirchhoff's second law is based on the law of conservation of energy.
  - According to Kirchhoff's first law (a)

At junction A,  $i_{AB} = 2 + 2 = 4A$ 

At junction *B*, 
$$i_{AB} = i_{BC} - 1 = 3A$$

$$\begin{array}{c} 2A \\ A \\ 2A \end{array}$$

At junction C,  $i = i_{BC} - 1.3 = 3 - 1.3 = 1.7$  amp

- In charging V > E. (c)
- (d) In open circuit of a cell V = E12.

- (a) Zero (Circuit open means no current and hence no potential difference across resistance).
- 14. (d) Zero (No potential difference across voltmeter).

15. (b) Let the e.m.f. of cell be *E* and internal resistance be *r*. Then  

$$0.5 = \frac{E}{(r+2)}$$
 and  $0.25 = \frac{E}{(r+5)}$ 

On dividing, 
$$2 = \frac{5+r}{2+r} \implies r = 1\Omega$$

- **16.** (c) In short circuiting R = 0, so V = 0
- 17. (c) Short circuit current  $i_{SC} = \frac{E}{r} \Rightarrow 3 = \frac{1.5}{r} \Rightarrow r = 0.5\Omega$

**18.** (c) 
$$i = \frac{50}{R+r} \Rightarrow r = \frac{50}{4.5} - 10 = \frac{5}{4.5} = 1.1\Omega$$

**19.** (d) 
$$(4+r)i = 2.2$$
 .....(i)

and 
$$4i = 2 \implies i = \frac{1}{2}$$

Putting the value of i in (i), we get r = 0.4 ohm.

**20.** (b) Let the internal resistance of cell be *r*, then

$$i = \frac{E}{R+r} \Rightarrow 15 = \frac{1.5}{0.04+r} \Rightarrow r = 0.06\Omega$$

21. (c) The voltage across cell terminal will be given by

$$=\frac{E}{R+r} \times R = \frac{2}{(3.9+0.1)} \times 3.9 = 1.95V$$

**22.** (c) E = 2.2 volt, V = 1.8 volt, R = 5R

$$r = \left(\frac{E}{V} - 1\right)R = \left(\frac{2.2}{1.8} - 1\right) \times 5 = 1.1\Omega$$

**23.** (b) In parallel, equivalent resistance is low 
$$li = \frac{E}{R + \frac{r}{n}}$$

24. (d) Internal resistance  $\propto$  distance  $\propto \frac{1}{\text{Area}} \propto \text{concentration}$ 

**25.** (a) Total e.m.f. = *nE*, Total resistance 
$$R + nr \Rightarrow i = \frac{nE}{R + nr}$$

- **26.** (a) Current through *R* is maximum when total internal resistance of the circuit is equal to external resistance.
- **27.** (b) Cells are joined in parallel when internal resistance is higher then a external resistance.  $(R \ll r)$

$$i = \frac{E}{R + \frac{r}{n}}$$

**28.** (b) In series , 
$$i_1 = \frac{2E}{2+2r}$$

In parallel, 
$$i_2 = \frac{E}{2 + \frac{r}{2}} = \frac{2E}{4 + r}$$

Since 
$$i_1 = i_2 \implies \frac{2E}{4+r} = \frac{2E}{2+2r} \implies r = 2\Omega$$

-

**29.** (a) Applying Kirchhoff law

$$(2+2) = (0.1+0.3+0.2)i \implies i = \frac{20}{3}A$$

Hence potential difference across A

$$= 2 - 0.1 \times \frac{20}{3} = \frac{4}{3} V \quad (\text{less than } 2V)$$

Potential difference across  $B = 2 - 0.3 \times \frac{20}{3} = 0$ 

**30.** (b) Here two cells are in series. Therefore total emf = 2*E*. Total resistance = R + 2r $\therefore i = \frac{2E}{R+2r} = \frac{2 \times 1.45}{1.5 + 2 \times 0.15} = \frac{2.9}{1.8} = \frac{29}{18} = 1.611 amp$ 

**31.** (a) 
$$E = V + i$$

After short-circuiting, 
$$V = 0$$
;  $\Rightarrow r = \frac{E}{i} = \frac{2}{4} = 0.5\Omega$ 

- 32. (c) By Kirchhoff's current law.
- (b) For power to be maximum
   External resistance = Equivalent internal resistance of the circuit

**34.** (a) 
$$i = \frac{E}{r} = \frac{1.5}{0.05} = 30A$$

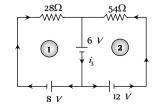
**35.** (a) 
$$i = \frac{12}{(4+2)} = 2A$$

Energy loss inside the source 
$$=i^2r = (2)^2 \times 2 = 8W$$

**36.** (b) 
$$V_2 - V_1 = E - ir = 5 - 2 \times 0.5 = 4 \text{ volu}$$
  
 $\Rightarrow V_2 = 4 + V_1 = 4 + 10 = 14 \text{ volu}$ 

**37.** (a) If m = Number of rows and n = Number of cells in a row Then  $m \times n$  = 100 .....(i) Also condition of maximum current is  $R = \frac{nr}{m}$ 

$$\Rightarrow 25 = \frac{1 \times n}{m} \Rightarrow n = 25 m \qquad \dots \dots (ii)$$


On solving (i) and (ii) m = 2

**38.** (b) According to Kirchhoff's law  $i_{CD} = i_2 + i_3$ 

**39.** (b) Since 
$$i = \left(\frac{E}{R+r}\right)$$
, we get  
 $0.5 = \frac{E}{2+r}$  .....(i)  
 $0.25 = \frac{E}{5+r}$  .....(ii)  
Dividing (i) by (ii), we get  $2 = \frac{5+r}{2+r} \Rightarrow r = 1\Omega$   
 $\therefore 0.5 = \frac{E}{2+1} \Rightarrow E = 1.5V$   
**40.** (c) Because  $E_{eq} = E$  and  $r_{eq} = \frac{r}{2}$ 

**41.** (d) In parallel combination  $E_{eq} = E = 6V$ 

**42.** (d) Suppose current through different paths of the circuit is as follows.



After applying KVL for loop (1) and loop (2)

We get 
$$28i_1 = -6 - 8 \implies i_1 = -\frac{1}{2}A$$
  
and  $54i_2 = -6 - 12 \implies i_2 = -\frac{1}{3}A$ 

Hence 
$$i_3 = i_1 + i_2 = -\frac{5}{6}A$$

**43.** (d) 
$$V_{AB} = 4 = \frac{5X + 2 \times 10}{X + 10} \implies X = 20\Omega$$

- **44.** (a) After short circuiting, *R* becomes meaningless.
- **45.** (c)  $V = E IR = 15 10 \times 0.05 = 14.5V$

**46.** (c) In series 
$$i = \frac{nE}{nr+R} \Rightarrow 0.6 = \frac{n \times 1.5}{n \times 0.5 \times 20} \Rightarrow n = 10$$

**48.** (a) 
$$P = \frac{W}{t} = Vi \implies V = \frac{W}{it} = \frac{1000}{2 \times 6 \times 60} = 1.38 V$$

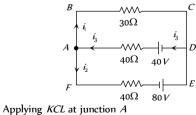
**49.** (a) Applying Kirchoff's voltage law in the given loop.

$$-2i+8-4-1\times i-9i=0 \implies i=\frac{1}{3}A$$

Potential difference across 
$$PQ = \frac{1}{3} \times 9 = 3V$$

**50.** (d) Because cell is in open circuit.

**51.** (b) In parallel combination 
$$E_{eq} = E = 12V$$


**52.** (d)

**53.** (b) 
$$i = \frac{E}{r} = \frac{6}{0.5} = 12 amp$$

**54.** (c) Strength =  $5 \times 18 = 90$ *AH*.

55. (a) 
$$i = \frac{E}{R+r} = \frac{5}{4.5+0.5} = 1A$$
  
 $V = E - ir = 5 - 1 \times 0.5 = 4.5$  Volt

**56.** (b) The circuit can be simplified as follows



$$i_3 = i_1 + i_2$$
 .....(i)

Applying Kirchoff's voltage law for the loop ABCDA

$$-30i_{1} - 40i_{3} + 40 = 0$$
  

$$\Rightarrow -30i_{1} - 40(i_{1} + i_{2}) + 40 = 0$$
  

$$\Rightarrow 7i_{1} + 4i_{2} = 4 \qquad \dots (ii)$$

Applying Kirchoff's voltage law for the loop ADEFA.

$$-40i_2 - 40i_3 + 80 + 40 = 0$$

$$\Rightarrow -40i_2 - 40(i_1 + i_2) = -120$$
  
$$\Rightarrow i_1 + 2i_2 = 3 \qquad \dots \dots \dots (iii)$$

On solving equation (ii) and (iii)  $i_1 = -0.4A$ .

57. (c) 
$$V = E - ir = 12 - 60 \times 5 \times 10^{-2} = 9V.$$

$$-10i + 5 - 20i - 2 = 0 \implies i = 0.1A$$

**59.** (d) 
$$V = E - ir = 1.5 - 2 \times 0.15 = 1.20$$
 Volt.

**60.** (b) 
$$i = \frac{E}{R+r} \Rightarrow 1 = \frac{4}{2+r} = r = 2\Omega$$

Short circuit when terminals of battery connected directly then  
current flows which is 
$$i_{SC} = \frac{E}{r} = \frac{4}{2} = 2A$$
.

**61.** (c) 
$$i = \frac{2+2}{1+1.9+0.9} = \frac{4}{3.8} A$$

For cell 
$$A E = V + ir \Rightarrow V = 2 - \frac{4}{3.8} \times 1.9 = 0$$
.

62. (c) By using 
$$i = \frac{E}{R+r}$$
  
 $\Rightarrow 0.5 = \frac{E}{11+r} \Rightarrow E = 5.5 + 0.5r$  .....(i)  
and  $0.9 = \frac{E}{5+r} \Rightarrow E = 4.5 + 0.9r$  .....(ii)

On solving these equation, we have  $r = 2.5\Omega$ 

(b) 
$$W = qV = 6 \times 10^{-6} \times 9 = 54 \times 10^{-6} J$$
.

**65.** (a)  $P = \frac{V^2}{R_{eq}}$ ; for *P* to be maximum  $R_{eq}$  should be less. Hence option (a) is correct.

**66.** (c) 
$$P_{\text{max}} = \frac{E^2}{4r} = \frac{(2)^2}{4 \times 0.5} = 2 W$$

**67.** (a)

 $\textbf{68.} \qquad (d) \quad \text{Applying Kirchhoff law in the first mesh}$ 

$$10 = 5 \times i \Longrightarrow i = \frac{10}{5} = 2A$$

 $\textbf{69.} \qquad (b) \quad \text{Applying Kirchhoff law in the first mesh}$ 

Current Electricity IIII

Applying in the second mesh  $5i_1 = 4i - 4i_1$  .....(ii) Solving equation (i) and (ii), we get  $i_1 = \frac{40}{29}A$ 

70. (a) Given problem is the case of mixed grouping of cells

b total current produced 
$$i = \frac{nE}{R + \frac{nr}{m}}$$

Here m = 100, n = 5000,  $R = 500 \Omega$ 

$$E = 0.15 V$$
 and  $r = 0.25 \Omega$ 

$$\Rightarrow \quad i = \frac{5000 \times 0.15}{500 + \frac{5000 \times 0.25}{100}} = \frac{750}{512.5} \approx 1.5 \,A$$

**71.** (a)

Se

**72.** (d) Watt hour efficiency =  $\frac{\text{Discharging energy}}{\text{Charging energy}}$ 

$$=\frac{14\times5\times15}{15\times8\times10}=0.875=87.5\%$$

**73.** (c) From Kirchoff's junction Law

$$\Rightarrow 4 + 2 + i - 5 - 3 = 0 \Rightarrow i = 2A$$

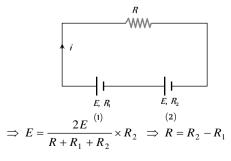
- **74.** (b) In the given case cell is in open circuit (i = 0) so voltage across the cell is equal to its e.m.f.
- 75. (b) The internal resistance of battery is given by

$$r = \left(\frac{E}{V} - 1\right)R = \left(\frac{40}{30} - 1\right) \times 9 = \frac{9 \times 10}{30} = 3 \Omega$$

**76.** (b) 
$$i = \frac{E}{r+R} \implies P = i^2 R \implies P = \frac{E^2 R}{(r+R)^2}$$

Power is maximum when  $r = R \implies P_{\text{max}} = E^2 / 4r$ 

77. (c) Since the current coming out from the positive terminal is equal to the current entering the negative terminal, therefore, current in the respective loop will remain confined in the loop itself.


 $\therefore$  current through 2 $\Omega$  resistor = 0

78. (c) Reading of voltmeter

$$= E_{eq} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2} = \frac{18 \times 1 + 12 \times 2}{1 + 2} = 14V$$

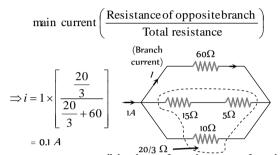
**79.** (d) 
$$i = \frac{2E}{R + R_1 + R_2}$$

From cell (2) 
$$E = V + iR_2 = 0 + iR_2$$



81

85.


(a) Applying Kirchoff's law in following figure.

At junction A:  

$$i + i_1 + i_2 = 1$$
 .... (i)  
For Loop (i)  
 $-60 i + (15 + 5)i_1 = 0$   
 $\Rightarrow i_1 = 3i$  ....(ii)  
For loop (2)  
 $-(15 + 5) i + 10 i = 0$   
 $a = 0$ 

 $\Rightarrow i = i = (3 i) = 6i$ 

On solving equation (i), (ii) and (iii) we get *i* = 0.1 *A* **Short Trick :** Branch current =



82. (d) Maximum current will be drawn from the circuit if resultant resistance of all internal resistances is equal to the value of external resistance if the arrangement s mixed. In series,  $R \gg nr$  and in parallel, the external resistance is negligible.

**83.** (c) On applying Kirchoff's current law 
$$i = 13 A$$
.

**84.** (c) Total cells = 
$$m \times n = 24$$
 .... (i)

For maximum current in the circuit  $R = \frac{mr}{n}$ 

$$\Rightarrow 3 = \frac{m}{n} \times (0.5) \Rightarrow m = 6n \qquad \dots (ii)$$

On solving equation (i) and (ii), we get m = 12, n = 2

 $(\Gamma)^2$ 

(a) Power dissipated = 
$$i^2 R = \left(\frac{E}{R+r}\right) R$$
  

$$\therefore \left(\frac{E}{R_1+r}\right)^2 R_1 = \left(\frac{E}{R_2+r}\right)^2 R_2$$

$$\Rightarrow R_1(R_2^2 + r_2 + 2R_2r) = R_2(R_1^2 + r^2 + 2R_1r)$$

$$\Rightarrow R_2^2 R_1 + R_1r^2 + 2R_2r = R_1^2 R_2 + R_2r^2 + 2R_1R_2r$$

$$\Rightarrow (R_1 - R_2)r^2 = (R_1 - R_2)r^2 = (R_1 - R_2)R_1R_2$$

$$\Rightarrow r = \sqrt{R_1R_2}$$

# **Different Measuring Instruments**

- (a) In meter bridge experiment, it is assumed that the resistance of the *L* shaped plate is negligible, but actually it is not so. The error created due to this is called, end error. To remove this the resistance box and the unknown resistance must be interchanged and then the mean reading must be taken.
- (c) To convert a galvanometer into an ammeter a low value resistance is to be connected in parallel to it called shunt.
- (d) Balance point has some fixed position on potentiometer wire. It is not affect by the addition of resistance between balance point and cell.

UNIVERSAL

# **1112 Current Electricity**

 (d) Resistance of voltmeter should be greater than the external circuit resistance. An ideal voltmeter has infinite resistance.

5. (c) 
$$S = \frac{i_g G}{i - i_g} = \frac{100 \times 0.01}{(10 - 0.01)} = \frac{1}{10} = 0.1\Omega$$

6. (c) Equivalent resistance of the circuit  $R_{eq} = 100\Omega$ 

current through the circuit  $i = \frac{2.4}{100} A$ 

P.D. across combination of voltmeter and 100  $\Omega$  resistance

$$=\frac{2.4}{100}\times 50=1.2V$$

Since the voltmeter and 100  $\Omega$  resistance are in parallel, so the voltmeter reads the same value i.e. 1.2 V.

7. (a) Potential gradient 
$$= \frac{e}{(R+R_h+r)} \cdot \frac{K}{L}$$
  
 $= \frac{2}{(15+5+0)} \times \frac{5}{1} = 0.5 \frac{V}{m} = 0.005 \frac{V}{cm}$   
8. (d)  $S = \frac{i_g G}{(i-i_g)} \Rightarrow \frac{G}{S} = \frac{i-i_g}{i_g} = \frac{10-1}{1} = \frac{9}{1}$ 

9. (c) Ammeter is used to measure the current through the circuit.

10. (c) 
$$S = \frac{i_g G}{(i - i_e)} = \frac{1 \times 0.018}{10 - 1} = \frac{0.018}{9} = 0.002\Omega$$

 (d) Potentiometer works on null deflection method. In balance condition no current flows in secondary circuit.

12. (c) Shunt resistances 
$$S = \frac{i_g G}{(i - i_g)} = \frac{10 \times 99}{(100 - 10)} = 11\Omega$$

13. (d) By using 
$$R = \frac{V}{i_g} - G \implies R = \frac{100}{5 \times 10^{-3}} - 5 = 19,995\Omega$$

14. (a) Potential gradient = Change in voltage per unit length

:. 
$$10 = \frac{V_2 - V_1}{30 / 100} \Rightarrow V_2 - V_1 = 3 \text{ volu}$$

15. (d) 
$$R = \frac{V}{i_g} - G = \frac{5}{100/10^3} - 2 = \frac{5000}{100} - 2 = 48\Omega$$

**16.** (c) 
$$i_g = \frac{iS}{S+G} \Rightarrow 10 = \frac{50 \times 12}{12+G} \Rightarrow 12+G = 60 \Rightarrow G = 48\Omega$$

17. (a) To convert a galvanometer into a voltmeter, a high value resistance is to be connected in series with it.
18. (b)

**19.** (c) 
$$\frac{T}{Q} = \frac{R}{S'}$$
 (For balancing bridge)

R

$$\Rightarrow S' = \frac{4 \times 11}{9} = \frac{44}{9}$$

$$P = 9\Omega$$

$$\Rightarrow \frac{1}{S'} = \frac{1}{r} + \frac{1}{6}$$

$$\Rightarrow \frac{9}{44} - \frac{1}{6} = \frac{1}{r}$$

$$\Rightarrow r = \frac{132}{5} = 26.4 \Omega$$

**20.** (a) 
$$r = \left(\frac{l_1 - l_2}{l_2}\right) R = \left(\frac{25}{100}\right) 2 = 0.5 \Omega$$

21. (b) The sensitivity of potentiometer can be increased by decreasing the potential gradient *i.e.* by increasing the length of potentiometer wire.

(Sensitivity 
$$\propto \frac{1}{P.G.} \propto \text{Length}$$
)

22. (b) In balance condition, potentiometer doesn't take the current from secondary circuit.

23. (a) Here same current is passing throughout the length of the wire, hence 
$$V \propto R \propto l$$

$$\Rightarrow \frac{V_1}{V_2} = \frac{l_1}{l_2} \Rightarrow \frac{6}{V_2} = \frac{300}{50} \Rightarrow V = V.$$

(a) 
$$S = \frac{i_g G}{i - i_g} = \frac{10 \times 0.01}{10 - 0.01} = \frac{10}{999} ohm$$

25. (a) Ratio will be equal to the ratio of no deflection lengths *i.e.*  $\frac{E_1}{E_2} = \frac{l_1}{l_2} = \frac{2}{3}$ 

**26.** (a) Potential gradient 
$$= \frac{\text{Potential difference}}{\text{Length}}$$

27. (a) Wheatstone bridge is balanced, therefore

$$\frac{P}{Q} = \frac{R}{S}$$
 or  $1 = \frac{10}{S} \implies S = 10 \text{ ohm}$ 

28. (a) When the length of potentiometer wire is increased, the potential gradient decreases and the length of previous balance point is increased.

31.

36.

24.

(b) The actual circuit is same.

**32.** (b) :: 
$$i_g = 10\%$$
 of  $i = \frac{i}{10} \Rightarrow S = \frac{G}{(n-1)} = \frac{90}{(10-1)} = 10\Omega$ 

**33.** (b) 
$$\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2} = \frac{(8+2)}{(8-2)} = \frac{5}{3}$$

**34.** (b) Suppose resistance *R* is connected in series with voltmeter as shown.

By Ohm's law  

$$i_g \cdot R = (n-1)V$$
 $i_g \cdot R$ 
 $(n-1)V$ 
 $i_g \cdot R$ 
 $(n-1)V \rightarrow i$ 
 $(n-1)V$ 

35. (c) Ammeter is always connected in series with circuit.

(c) If resistance of ammeter is *r* then  $20 = (R+r)4 \implies R+r=5 \implies R < 5 \Omega$ 

**37.** (b) 
$$S = \frac{i_g \times G}{i - i_g} = \frac{10 \times 10^{-3} \times 50}{1 - 10^{-3} \times 10} = \frac{50}{99} \Omega$$
 in parallel.

**38.** (b) :: 
$$i_g = (100 - 90)\%$$
 of  $i = \frac{i}{10}$ 

$$\Rightarrow$$
 Required shunt  $S = \frac{G}{(n-1)} = \frac{900}{(10-1)} = 100 \Omega$ 

**39.** (d) 
$$R = \frac{V}{i_g} - G = \frac{100}{10 \times 10^{-3}} - 25 = 9975 \,\Omega$$

**40.** (b) Potential gradient 
$$x = \frac{V}{L} = \frac{iR}{L}$$

$$\Rightarrow x = \frac{2}{(15+5)} \times \frac{15}{10} = \frac{3}{2000} \operatorname{volt/cm}$$

**41.** (a) 
$$S = \frac{G}{\frac{i}{i_g} - 1} = \frac{25}{\frac{5}{50 \times 10^{-6}} - 1} = \frac{25}{10^5 - 1} = \frac{25}{10^5} = 2.5 \times 10^{-4} \Omega$$

- (b) In balanced Wheatstone bridge, the arms of galvanometer and 42. cell can be interchanged without affecting the balance of the bridge.
- Error in measurement = Actual value Measured value (c) 43.

 $\therefore$  Measured value  $=\frac{998}{500}V$  $\Rightarrow \text{ Error} = 2 - \frac{998}{500} = 4 \times 10^{-3} \text{ volt}$ 

- (d) The emf of the standard cell must be greater than that of 44. experimental cells, otherwise balance point is not obtained.
- 45. (a)
- 46. (b) In general, ammeter always reads less than the actual value because of its resistance.

47. (c) By Wheatstone bridge, 
$$\frac{R}{80} = \frac{AC}{BC} = \frac{20}{80} \implies R = 20 \Omega$$

48.  $E \propto l$  (balancing length) (a)

**49.** (b) 
$$r = \left(\frac{l_1 - l_2}{l_2}\right) \times R' = \left(\frac{l_1 - 2}{2}\right) \times 5$$
 ... (i)  
and  $r = \left(\frac{l_1 - 3}{3}\right) \times 10$  ... (ii)

On solving (i) and (ii)  $r = 10 \Omega$ 

50. (a) 51. (b) In the part *c b d*,

$$V_c - V_b = V_b - V_d \implies V_b = \frac{V_c + V_d}{2}$$

In the part *c a d* 

$$V_c - V_a > V_a - V_d \implies \frac{V_c + V_d}{2} > V_a \implies V_b > V_d$$

In balance condition, no current will flow through the branch (c) 52. containing S.

53. (b) Resistance in parallel 
$$S = \frac{Gi_g}{i - i_g} = \frac{50 \times 100 \times 10^{-6}}{(10 - 100 \times 10^{-6})}$$

$$\Rightarrow S = 5 \times 10^{-4} \Omega$$

54. (b) 
$$E = x \ l = \frac{V}{l} = \frac{iR}{L} \times l \Rightarrow E = \frac{e}{(R+R_h+r)} \times \frac{R}{L} \times l$$
  
 $\Rightarrow E = \frac{10}{(5+4+1)} \times \frac{5}{5} \times 3 = 3 \ V$ 

**55.** (a) Potential gradient 
$$= \frac{V}{L} = \frac{iR}{L} = \frac{i\rho L}{AL} = \frac{i\rho}{A}$$

56.

63.

(c)

$$= \frac{0.2 \times 40 \times 10^{-6}}{8 \times 10^{-6}} = 10^{-2} V/m$$
  
(b)  $i_g = 2\%$  of  $i = \frac{i}{50} \Rightarrow S = \frac{G}{(n-1)} = \frac{G}{(50-1)} = \frac{G}{49}$ 

$$R = \frac{20 \times 10^{3} \Omega}{V}$$
Here  $i = \frac{110}{20 \times 10^{3} + R}$ 

$$\therefore V = iR \Rightarrow 5 = \left(\frac{110}{20 \times 10^{3} + R}\right) \times 20 \times 10^{3}$$

$$\Rightarrow 10^{5} + 5R = 22 \times 10^{5} \Rightarrow R = 21 \times \frac{10^{5}}{5} = 420 K\Omega$$

- (c) Due to the negligible temperature co-efficient of resistance of 59. constantan wire, there is no change in it's resistance value with change in temperature.
- The resistance of voltmeter is too high, so that it draws (d) 60. negligible current from the circuit, hence potential drop in the external circuit is also negligible.
- By connecting a series resistance 61. (a)

$$R = \frac{V}{i_g} - G = \frac{10}{1} - 7 = 3 \,\Omega$$

(a) Since potential difference for full length of wire = 2 V62.

$$\therefore$$
 P.D. per unit length of wire  $=\frac{2}{4}=0.5\frac{V}{m}$ 

(d) 
$$\frac{X}{1} = \frac{20}{80} \implies X = \frac{1}{4}\Omega = 0.25 \Omega$$
.

- Reading of galvanometer remains same whether switch S is 64. (a) open or closed, hence no current will flow through the switch i.e. R and G will be in series and same current will flow through them.  $I_R = I_G$ .
- 65.  $\left(d\right)$   $\ \mbox{Pressing the key does not disturb current in all resistances as}$ the bridge is balanced. Therefore, deflection in the galvanometer in whatever direction it was, will stay.

**66.** (b) 
$$i_g S = (i - i_g)G \implies i_g (S + G) = iG$$

$$\Rightarrow \frac{i_g}{i} = \frac{G}{S+G} = \frac{8}{2+8} = 0.8$$

**67.** (a) Potential gradient 
$$x = \frac{e}{(R+R_b+r)} \cdot \frac{R}{L}$$

$$\Rightarrow x = \frac{2.5}{(20+80+0)} \times \frac{20}{10} = 5 \times 10^{-5} \frac{V}{mm}$$

**68.** (b) Given 
$$i_{g} = 2mA$$
,  $i = 20mA$ ,  $G = 180\Omega$ 

$$\frac{i_g}{i} = \frac{S}{G+S} \implies 180 + S = 10S \implies S = \frac{180}{9} = 20\Omega$$

**69.** (c) Resistance of shunted ammeter = 
$$\frac{GS}{G+S}$$

70.

# **1114 Current Electricity**

Also 
$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{GS}{G+S} = \frac{i_g \cdot G}{i}$$
  
 $\Rightarrow \frac{GS}{G+S} = \frac{0.05 \times 120}{10} = 0.6 \Omega$   
(c)  $r = \frac{(l_1 - l_2)}{l_2} \times R' = \left(\frac{60 - 50}{50}\right) \times 6 = 1.2 \Omega$ 

71. (d) By using 
$$\frac{i}{i_g} = 1 + \frac{G}{S}$$
  
 $\Rightarrow \frac{i}{100 \times 10^{-3}} = 1 + \frac{1000}{S} \Rightarrow S = \frac{1000}{9} = 111\Omega$ 

100×10<sup>-3</sup> S 9 72. (c) Potential gradient  $x = \frac{V}{L} = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$  $\Rightarrow 2.2 \times 10^{-3} = \frac{2.2}{(10+R_h)} \times 1 \Rightarrow R' = 990 \Omega$ 

73. (a) 
$$\frac{i}{i_g} = \frac{G+S}{S} \Rightarrow \frac{i_g}{i} = \frac{S}{G+S} = \frac{2.5}{27.5} = \frac{1}{11}$$

74. (c) Total resistance of the circuit  $=\frac{80}{2}+20=60\,\Omega$ 

$$\Rightarrow \text{Main current } i = \frac{2}{60} = \frac{1}{30} A$$

Combination of voltmeter and  $80\Omega$  resistance is connected in series with  $20\Omega$ , so current through  $20\Omega$  and this combination will be same  $=\frac{1}{30}A$ .

Since the resistance of voltmeter is also  $80\Omega$ , so this current is equally distributed in  $80\Omega$  resistance and voltmeter (*i.e.*  $\frac{1}{60}A$  through each)

P.D. across 80
$$\Omega$$
 resistance  $=\frac{1}{60} \times 80 = 1.33 V$ 

**75.** (a) Potential gradient  $x = \frac{V}{L} = \frac{iR}{L} = \frac{i\left(\frac{\rho L}{A}\right)}{L} = \frac{i\rho}{A}$ 

**76.** (d) Here 
$$n = \frac{10}{2} = 5$$
  
 $\therefore R = (n-1)G = (5-1)2000 = 8000 \Omega$   
**77.** (b)  $r = \left(\frac{l_1 - l_2}{r_1}\right)R = 0.5 \Omega$ .

**77.** (b) 
$$r = \left(\frac{l_1}{l_1}\right)^{r_1}$$
  
**78.** (a)

79. (b) 
$$V = i.R. = \frac{e}{(R+R_h+r)}.R \Rightarrow 10^{-3} = \frac{2}{(10+R+r)} \times 10^{-3}$$
  
 $\Rightarrow R = 19,989\Omega.$   
80. (a)

81. (c) 
$$2R > 20 \Longrightarrow R > 10\Omega$$
.

82. (c) 
$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{4}{1} = 1 + \frac{R}{S} \Rightarrow S = \frac{R}{3}$$

83. (a) When ammeter is connected in parallel to the circuit, net resistance of the circuit decreases. Hence more current is drawn from the battery, which damages the ammeter.

**84.** (a) 
$$r = \left(\frac{l_1 - l_2}{l_2}\right) \times R' \Rightarrow r = \left(\frac{55 - 50}{50}\right) \times 10 = 1\Omega.$$

85. (b) 
$$R = \frac{V}{i_g} - G = \frac{18}{3 \times 10^{-3}} - 12 = 5988 \Omega$$
  
86. (d)  
87. (c)  $R = \frac{V}{i_g} - G = \frac{6}{6 \times 10^{-3}} - 25 = 975 \Omega$  (In series).  
88. (d)  $i_g = i \frac{S}{G+S} \implies 0.01 = 10 \frac{S}{25+S}$   
 $\implies 1000S = 25 + S \implies S = \frac{25}{999} \Omega$ .

$$A \begin{bmatrix} X & 6\Omega \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Resistance of the part 
$$AC^{5V}$$

 $R_{AC} = 0.1 \times 40 = 4\Omega$  and  $R_{CB} = 0.1 \times 60 = 6\Omega$ In balanced condition  $\frac{X}{6} = \frac{4}{6} \Rightarrow X = 4\Omega$ Equivalent resistance  $R_{eq} = 5\Omega$  so current drawn from battery  $i = \frac{5}{5} = 1A$ .

**90.** (a) 
$$(R+G)i_g = V \implies (R+G) = \frac{V}{i_g}$$
  
=  $\frac{3}{30 \times 16 \times 10^{-6}} = 6.25 k\Omega$ 

 $\therefore$  Value of R is nearly equal to  $6k\Omega$ 

This is connected in series in a voltmeter.

$$\begin{array}{c} V_1 \\ \hline \\ R_1 = 16 k\Omega \\ \hline \\ \hline \\ V_1 = 80 V \end{array}$$

 $R_1 = 80 \times 200 = 16000 \,\Omega = 16 \,k\Omega$ 

Current flowing through  $V_1$  = Current flowing through  $V_2$  =

$$\frac{80}{16 \times 10^3} = 5 \times 10^{-3} A .$$

So, potential differences across  $V_2$  is

$$V_2 = 5 \times 10^{-3} \times 32 \times 10^3 = 160$$
 volt

Hence, line voltage 
$$V = V_1 + V_2 = 80 + 160 = 240V$$
 .

92. (d) 
$$V = xl \Rightarrow iR = xl$$
  
 $\Rightarrow i \times 10 = \left(\frac{2 \times 10^{-3}}{10^{-2}}\right) \times 50 \times 10^{-2} = 0.1$   
 $\Rightarrow i = 10 \times 10^{-3} A = 10 mA$ .

**93.** (d) 
$$E = \frac{e}{(R+R_h+r)} \frac{R}{L} \times l = \frac{2}{(10+40+0)} \times \frac{10}{1} \times 0.4 = 0.16V$$
.

**94.** (c) 
$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{5}{2} = 1 + \frac{12}{S} \Rightarrow S = 8\Omega$$
. (In parallel).

**95.** (d) 
$$\frac{i_g}{i} = \frac{S}{G+S} \Rightarrow \frac{5}{100} = \frac{S}{G+S} \Rightarrow S = \frac{G}{19}$$

**96.** (a) 
$$R = G(n-1) = 50 \times 10^3 (3-1) = 10^5 \Omega$$

**97.** (c) 
$$\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2} = \frac{58 + 29}{58 - 29} = \frac{3}{1}$$

**98.** (a) 
$$R = \frac{V}{i_g} - G = \frac{10}{10 \times 10^{-3}} - 1 = 999\Omega$$
.

**99.** (d) For conversion of galvanometer (of resistances) into voltmeter, a resistance *R* is connected in series.

$$\therefore i_g = \frac{V_1}{R+G} \text{ and } i_g = \frac{V_2}{2R+G}$$
$$\Rightarrow \frac{V_1}{R+G} = \frac{V_2}{2R+G} \Rightarrow \frac{V_2}{V_1} = \frac{2R+G}{R+G} = \frac{2(R+G)-G}{(R+G)}$$
$$= 2 - \frac{G}{(R+G)} \Rightarrow V_2 = 2V_1 - \frac{V_1G}{(R+G)} \Rightarrow V_2 < 2V_1$$

100. (d) If the voltmeter is ideal then given circuit is an open circuit, so reading of voltmeter is equal to the e.m.f. of cell *i.e.*, 6 *V*.

101. (c) 
$$\frac{i_g}{i} = \frac{S}{G+S} = \frac{4}{36+4} = \frac{1}{10}$$
 *i.e.* 10%.

102. (d) After connecting a resistance *R* in parallel with voltmeter its effective resistance decreases. Hence less voltage appears across it *i.e. V* will decreases. Since overall resistance decreases so more current will flow *i.e. A* will increase.

**103.** (c) Potential gradient 
$$x = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$$

$$\Rightarrow \quad \frac{10^{-3}}{10^{-2}} = \frac{2}{(3+R_h+0)} \times \frac{3}{1} \Rightarrow R_h = 57\Omega.$$

104. (c)  $\frac{i}{i_g} = 1 + \frac{G}{S} \implies \frac{1}{10^{-3}} = 1 + \frac{20}{S} \implies S = \frac{20}{999} \approx 0.02\Omega$ .

- **105.** (a) Resistance of voltmeter should be high.
- 106. (c) If ammeter is used in place of voltmeter (*i.e.* in parallel) it may damage due to large current in circuit. Hence to control this large amount of current a high resistance must be connected in series.

107. (c) Potential gradient 
$$x = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$$
  
=  $\frac{3}{(20+10+0)} \times \frac{20}{10} = 0.2$ 

**108.** (d) 
$$\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2} = \frac{(6+2)}{(6-2)} = \frac{2}{1}$$

109. (c) Manganin or constantan are used for making the potentiometer wire.
110. (a)

$$\mathbf{m.} \qquad (\mathbf{a}) \quad \frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{i \cdot G}{V_g} = 1 + \frac{G}{S} \Rightarrow \frac{100 \times 10^{-3} \times 40}{800 \times 10^{-3}} = 1 + \frac{40}{S}$$
$$\Rightarrow S = 10\Omega.$$

**112.** (a) 
$$i_g = i \frac{S}{G+S} \Rightarrow 10 \times 10^{-3} = \frac{S}{100+S} \times 100 \times 10^{-3}$$
  
90  $S = 1000 \Rightarrow S = \frac{1000}{90} = 11.11 \Omega$ .

113. (c) Before connecting the voltmeter, potential difference across  $100\Omega$  resistance

$$V_{i} = \frac{100}{(100 + 10)} \times V = \frac{10}{11} V$$
Finally after connecting  
voltmeter across 100Ω  
Equivalent resistance  
$$\frac{100 \times 900}{V} = 90\Omega$$

Final potential difference

(100 + 900)

$$V_{f} = \frac{90}{(90+10)} \times V = \frac{9}{10} V$$

$$(900)$$

$$W_{f} = \frac{V_{i} - V_{f}}{V_{i}} \times 100$$

$$W_{f} = \frac{10}{11} V - \frac{9}{10} V$$

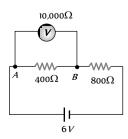
$$V_{f} \rightarrow 100 = 1.0.$$

$$W_{f} \rightarrow 100$$

114. (b) Potential gradient = 
$$\frac{e.R}{(R+r).L} = \frac{10 \times 3}{(3+3) \times 5}$$
  
=  $1V/m = 10 \ mV \ / \ cm$ .

**115.** (c) 
$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{1}{10^{-5}} = 1 + \frac{100}{S} \Rightarrow S \approx \frac{100}{10^5} = 10^{-3} \Omega$$
.

**116.** (d) 
$$\frac{i_g}{i} = \frac{S}{G+S} = \frac{4}{36+4} = \frac{4}{40} = \frac{1}{10}$$


**117.** (a) 
$$i = \frac{V}{R} \Rightarrow 2 = \frac{6}{\frac{6 \times 3}{6 + 3} + R} = \frac{6}{2 + R} \Rightarrow R = 1 \Omega.$$

**118.** (b) 
$$i_g = i \frac{S}{G+S} \Rightarrow \frac{0.01}{10} = \frac{5}{50+S} \Rightarrow S = \frac{50}{999} = 0.05\Omega$$
.

**119.** (d) 
$$S = \left(\frac{100 - l}{l}\right) R$$
  
Initially,  $30 = \left(\frac{100 - l}{l}\right) \times 10 \Rightarrow l = 25 cm$   
Finally,  $10 = \left(\frac{100 - l}{l}\right) \times 30 \Rightarrow l = 75 cm$   
So, shift = 50 cm.

120. (c) Potential gradient (x) 
$$=\frac{i\rho}{A} = \frac{0.1 \times 10^{-7}}{10^{-6}} = 10^{-2} V/m$$

121. (d) Before connecting voltmeter potential difference across  $400\Omega$  resistance is



$$V_i = \frac{400}{(400 + 800)} \times 6 = 2V$$

After connecting voltmeter equivalent resistance between A and  $B = \frac{400 \times 10,000}{-384.60}$ 

$$V_{f} = \frac{384.6}{(384.6 + 800)} \times 6 = 1.95V$$

Error in measurement =  $V_i - V_f = 2 - 1.95 = 0.05 V$ .

122. (c) 
$$\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{5}{0.05} = 1 + \frac{50}{S}$$
  
 $\Rightarrow S = \frac{50}{99} = \frac{\rho \times l}{A} \Rightarrow l = \frac{50}{99} \times \frac{2.97 \times 10^{-2} \times 10^{-4}}{5 \times 10^{-7}} = 3m.$   
123. (a)  $\frac{i}{i_g} = 1 + \frac{G}{S} \Rightarrow \frac{10}{1} = 1 + \frac{0.81}{S} \Rightarrow S = 0.09\Omega.$ 

(a) From the principle of potentiometer  $V \propto l$ 124.

> $\Rightarrow \frac{V}{E} = \frac{l}{L}$ ; where V = emf of battery, E = emf of standardcell, *L* = Length of potentiometer wire EI = 30E

$$V = \frac{Li}{L} = \frac{30L}{100}$$

125. (b) 
$$E = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L} \times l$$
  
 $\Rightarrow 10 \times 10^{-3} = \frac{2}{(10+R+0)} \times \frac{10}{1} \times 0.4 \Rightarrow R = 790\Omega$   
126. (b) Using  $r = R\left(\frac{l_1}{l_2} - 1\right) = 2\left(\frac{150}{100} - 1\right) = 1\Omega$ 

**127.** (d) Resistance between *A* and 
$$B = \frac{1000 \times 500}{(1500)} = \frac{1000}{3}$$

So, equivalent resistance of the circuit  

$$R_{eq} = 500 + \frac{1000}{3} = \frac{2500}{3}$$

$$\therefore \text{ Current drawn from the cell}$$

$$i = \frac{10}{(2500/3)} = \frac{3}{250}A$$
Reading of voltmeter *i.e.*
Potential difference across  $AB = \frac{3}{250} \times \frac{1000}{3} = 4V$ 

$$i_g = \frac{i}{10} \implies \text{Required shunt } S = \frac{G}{(n-1)} = \frac{90}{(10-1)} = 10 \Omega$$

129. (b) 
$$i_g = \frac{50}{10 \times 10^{-3}} - 40 = 4960 \,\Omega$$

128.

(d)

130. (c) Post office box is based on the principle of Wheatstone's bridge

131. (d) Full deflection current 
$$i_g = 25 \times 4 \times 10^{-4} = 100 \times 10^{-4} A$$
  
Using  $R = \frac{V}{I_g} - G = \frac{25}{100 \times 10^{-4}} - 50 = 2450 \,\Omega$  in series.

**132.** (a) In balancing condition, 
$$\frac{R_1}{R_2} = \frac{l_1}{l_2} = \frac{l_1}{100 - l_1}$$
  
 $\Rightarrow \frac{X}{Y} = \frac{20}{80} = \frac{1}{4}$  .....(i)  
and  $\frac{4X}{Y} = \frac{l}{100 - l}$  .....(ii)  
 $\Rightarrow \frac{4}{4} = \frac{l}{100 - l} \Rightarrow l = 50 \text{ cm}$   
**133.** (c)  
**134.** (d)  $S = \left(\frac{i_g}{i - i_g}\right) \times G = \frac{100 \times 10^{-6}}{(10 \times 10^{-3} - 100 \times 10^{-6})} \times 50 \approx 0.5 \Omega$   
(in parallel)  
**135.** (d)  $E = \frac{e}{(R + R_h + r)} \cdot \frac{R}{L} \times l \Rightarrow 0.4 = \frac{5}{(5 + 45 + 0)} \times \frac{5}{10} \times l$   
 $\Rightarrow l = 8 m$   
**136.** (a) Potential difference per unit length  $= \frac{V}{L} = \frac{2}{4} = 0.5 V/m$   
**137.** (a)

**138.** (b) 
$$r = R\left(\frac{l_1}{l_2} - 1\right) = 2\left(\frac{240}{120} - 1\right) = 2\Omega$$

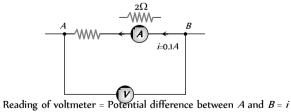
**139.** (d) 
$$E = \frac{V}{l}$$
; *E* is constant (volt. gradient).

$$\Rightarrow \frac{V_1}{l_1} = \frac{V_2}{l_2} \Rightarrow \frac{1.1}{140} = \frac{V}{180} \Rightarrow V = \frac{180 \times 1.1}{140} = 1.41 V$$

**140.** (a) 
$$I_G \times G = (I - I_G)S \Longrightarrow I = (1 + \frac{G}{S})I_G \Longrightarrow I = 100.1 \ mA$$

(c) Let S be larger and R be smaller resistance connected in two 141. gaps of meter bridge.

$$S = \left(\frac{100 - l}{l}\right)R = \frac{100 - 20}{20}R = 4R \quad \dots (i)$$


When  $15\Omega$  resistance is added to resistance *R*, then

$$S = \left(\frac{100 - 40}{40}\right)(R + 15) = \frac{6}{4}(R + 15) \qquad \dots \text{ (ii)}$$

From equations (i) and (ii)  $R = 9\Omega$ 

(a) According to following figure 142.

*.*..



 $(R+2) \Longrightarrow 12 = 0.1 (R+2) \Longrightarrow R = 118 \Omega.$ 

**143.** (a) Potential gradient 
$$x = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$$

$$\Rightarrow \frac{0.2 \times 10^{-3}}{10^{-2}} = \frac{2}{(R+490+0)} \times \frac{R}{1} \Rightarrow R = 4.9 \ \Omega.$$

# **Critical Thinking Questions**

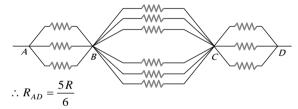
**1.** (a) Initially : Resistance of given cable

$$R = \rho \frac{l}{\pi \times (9 \times 10^{-3})^2}$$

Finally : Resistance of each insulated copper wire is

$$R' = \rho \frac{l}{\pi \times (3 \times 10^{-3})^2}$$
. Hence equivalent resistance of

cable 
$$R_{eq} = \frac{R'}{6} = \frac{1}{6} \times \left(\rho \frac{l}{\pi \times (3 \times 10^{-3})^2}\right)$$
....(ii)


On solving equation (i) and (ii) we get  $R_{a}$  = 7.5  $\Omega$ 

2. (a) 
$$\frac{R_A}{R_B} = \left(\frac{r_B}{r_A}\right)^4 \Rightarrow \frac{R_A}{R_B} = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \Rightarrow R_B = 16R_A$$

When  $R_{i}$  and  $R_{j}$  are connected in parallel then equivalent resistance  $R_{eq} = \frac{R_A R_B}{(R_A + R_B)} = \frac{16}{17} R_A$ 

If 
$$R_A = 4.25\Omega$$
 then  $R_{eq} = 4\Omega$  *i.e.* option (a) is correct.

3. (c) The given circuit can be simplified as follows



4. (c) Suppose n resistors are used for the required job. Suppose equivalent resistance of the combination is R and according to energy conservation it's current rating is i'.

Energy consumed by the combination =  $n \times$  (Energy consumed by each resistance)

$$\Rightarrow i^2 R' = n \times i^2 R \Rightarrow n = \left(\frac{i}{i}\right)^2 \times \left(\frac{R'}{R}\right) = \left(\frac{4}{1}\right)^2 \times \left(\frac{5}{10}\right) = 8$$

R

R

5. (c) Resistance across  $AB = \frac{1}{R'} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R_1}$ 

$$R_1 = 2 \times 10^{-6} \Omega$$

and  $R = \pi \times 1 \times 10^{-6} \Omega$ On solving.

$$R' = 0.88 \times 10^{-6} \Omega$$

6. (b) No current flows through the capacitor branch in steady state. Total current supplied by the battery

$$i = \frac{6}{2.8 + 1.2} = \frac{3}{2}.$$

Current through 2  $\Omega$  resistor  $=\frac{3}{2} \times \frac{3}{5} = 0.9A$ 

(d) At time t = 0 *i.e.* when capacitor is charging, current  $i = \frac{2}{1000} = 2mA$ 

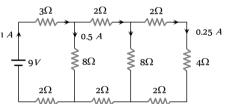
When capacitor is full charged, no current will pass through it, hence current through the circuit  $i = \frac{2}{2000} = 1mA$ 

(d) Current in the bulb 
$$= \frac{P}{V} = \frac{4.5}{1.5} = 3A$$

7.

8.

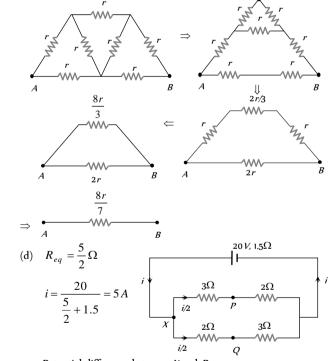
9.


12.

Current in 1  $\Omega$  resistance  $=\frac{1.5}{1}=1.5A$ 

Hence total current from the cell i = 3 + 1.5 = 4.5ABy using  $E = V + ir \Rightarrow E = 1.5 + 4.5 \times (2.67) = 13.5V$ 

#### (d) Equivalent resistance of the circuit $R = 9\Omega$


$$\therefore$$
 Main current  $i = \frac{V}{R} = \frac{9}{9} = 1A$ 



After proper distribution, the current through  $4\Omega$  resistance is 0.25 *A*.

**10.** (b) Maximum number of resistance  $= 2^{n-1} = 2^{3-1} = 4$ 

**11.** (d) The given circuit can be simplified as follows.



Potential difference between X and P,

$$V_X - V_P = \left(\frac{5}{2}\right) \times 3 = 7.5V \qquad \dots (i)$$

$$V_{X} - V_{Q} = \frac{5}{2} \times 2 = 5V \qquad ...(ii)$$
On solving (i) and (ii)  $V_{P} - V_{Q} = -2.5 \text{ volt}; V_{Q} > V_{P}$ .  
**Short Trick** :  $(V_{P} - V_{Q}) = \frac{i}{2}(R_{2} - R_{1}) = \frac{5}{2}(2 - 3) = -2.5$   
 $\Rightarrow V_{Q} > V_{P}$   
(c)  $R_{t_{1}} = R_{1}(1 + \alpha_{1}t) \text{ and } R_{t_{2}} = R_{2}(1 + \alpha_{2}t)$   
Also  $R_{eq.} = R_{t_{1}} + R_{t_{2}} \Rightarrow R_{eq} = R_{1} + R_{2} + (R_{1}\alpha_{1} + R_{2}\alpha_{2})t$   
 $\Rightarrow R_{eq} = (R_{1} + R_{2}) \left\{ 1 + \left( \frac{R_{1}\alpha_{1} + R_{2}\alpha_{2}}{R_{1} + R_{2}} \right) t \right\}$   
So  $\alpha_{eff} = \frac{R_{1}\alpha_{1} + R_{2}\alpha_{2}}{R_{1} + R_{2}}$   
(b) Let the voltage across any one cell is V, then  
 $V_{e} = E_{ex} i \pi_{ex} = \pi \left( \frac{2E}{R_{1}} \right)$ 

14.

13.

$$V = E - ir = E - r_1 \left( \frac{2E}{r_1 + r_2 + R} \right)$$
  
But  $V = 0$   
$$\Rightarrow E - \frac{2Er_1}{r_1 + r_2 + R} = 0$$
  
$$\Rightarrow r_1 + r_2 + R = 2r_1$$
  
$$\Rightarrow R = r_1 - r_2$$

**15.** (b) Emf 
$$E = 5V$$
, Internal resistance  $r = \frac{5}{10} = 0.5\Omega$   
Current through the resistance  $i = \frac{5}{(2+0.5)} = 2A$ 

16. (b) The given circuit can be redrawn

$$E_{eq} = \frac{E_1 R_2}{R_1 + R_2} = \frac{2 \times 4 + 2 \times 4}{4 + 4} = 2V \text{ and}$$

$$R_{eq} = \frac{4}{2} = 2\Omega. \text{ Current } i = \frac{2 + 2}{2} = 2A \text{ from } A \text{ to } B$$

 $-2i_{1}$ 

(b) Applying Kirchhoff's law for the loops (1) and (2) as shown in 17. figure

For loop (1)  

$$i_1$$
  
 $i_2$   
 $i_2$   
 $i_2$   
 $i_2$   
 $i_2$   
 $R_1 = 2\Omega$   
 $i_1$   
 $i_2$   
 $R_3 = 2\Omega$   
 $R_3 = 2\Omega$   
 $R_2 = 4\Omega$   
 $i_2$   
 $i_2$   
 $i_2$   
 $R_3 = 2\Omega$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_3$   
 $i_2$   
 $i_3$   
 $i_3$ 

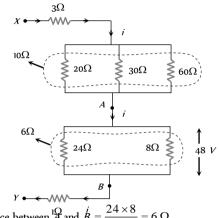
For loop (2)  

$$-2(i_1 - i_2) + 4i_2 - 6 = 0 \implies -i_1 + 3i_2 = 3$$
 ...(ii)

On solving equation (i) and (ii)  $i_1 = 1.8A$ .

(b) To convert a galvanometer into an ammeter, a shunt  $S = \frac{I_g}{I - I_g} G$  is connected in parallel with it. To convert a

galvanometer into a voltmeter, a resistance  $R = \frac{V}{I_a} - G$  is


connected in series with it.

18.

21.

22.

...(i)



Resistance between  $\stackrel{1\Omega}{A}$  and  $\stackrel{i}{B} = \frac{24 \times 8}{32} = 6 \Omega$ 

Current between A and B = Current between X and Y $=i=\frac{48}{6}=8A$ 

Resistance between X and  $Y = (3 + 10 + 6 + 1) = 20 \Omega$ 

 $\Rightarrow$  Potential difference between X and Y = 8  $\times$  20 = 160 V

(d)  $R_1 + R_2 = R_1(1 + \alpha t) + R_2(1 - \beta t)$ 20.

$$\Rightarrow R_1 + R_2 = R_1 + R_2 + R_1 \alpha t - R_2 \beta t \Rightarrow \frac{R_1}{R_2} = \frac{\beta}{\alpha}$$

(d) Current density of drifting electrons 
$$j = nev$$
  
 $n = 5 \times 10^7 cm^{-3} = 5 \times 10^7 \times 10^6 m^{-3}$ .  
 $v = 0.4ms^{-1}, e = 1.6 \times 10^{-19} C \Longrightarrow j = 3.2 \times 10^{-6} Am^{-2}$ 

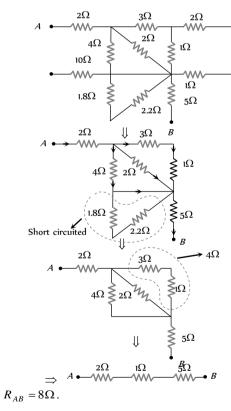
Current density of ions =  $(4 - 3.2) \times 10^{-5} = 0.8 \times 10^{-6} \frac{A}{m^2}$ 

This gives v for ions = 0.1 ms. In the following figure

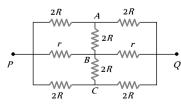
(a) In the following figure  
Resistance of part *PNQ*:  

$$R_1 = \frac{10}{4} = 2.5\Omega$$
 and  
Resistance of part *PMQ*;  
 $R_2 = \frac{3}{4} \times 10 = 7.5\Omega$   
 $R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{2.5 \times 7.5}{(2.5 + 7.5)} = \frac{15}{8}\Omega$ .  
Main Current  $i = \frac{3}{\frac{15}{8} + 1} = \frac{24}{23}A$   
So,  $i = i \times \left(\frac{R_2}{R_1 + R_2}\right) = \frac{24}{23} \times \left(\frac{7.5}{2.5 + 7.5}\right) = \frac{18}{23}A$ 

and 
$$i_2 = i - i_1 = \frac{24}{23} - \frac{18}{23} = \frac{6}{23}A$$

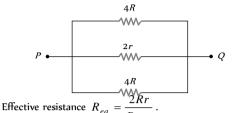

**23.** (c) As *I* is independent of  $R_6$ , no current flows through  $R_6$  this requires that the junction of  $R_1$  and  $R_2$  is at the same potential as the junction of  $R_3$  and  $R_4$ . This must satisfy the condition

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
, as in the Wheatstone bridge.


- (c) Moving anticlockwise from A -iR-V+2V-2iR=0or 3iR=V or  $i=\frac{V}{3R}$   $V_A - V_B = iR+V-V = iR$  $\Rightarrow$  Potential drop across  $C=\frac{V}{3}$
- **25.** (b) Let *R* and *m* be the resistance and mass of the first wire, then the second wire has resistance 2R and mass 2m. Let E = emf of each cell, S = specific heat capacity of the material of the wire.

For the first wire, current  $i_1 = \frac{3E}{R}$  and  $i_1^2 R t = mS \Delta T$ For the second wire,  $i_2 = \frac{NE}{2R}$  and  $i_2^2(2R)t = 2mS \Delta T$ . Thus,  $i_1 = i_2$  or N = 6.

24

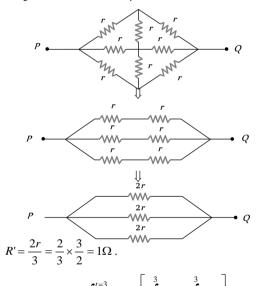







In a circuit, any circuit element placed between points at the same potential can be removed, without affecting the rest of the circuit. Here, by symmetry, points A, B and C are at same potential, for any potential difference between P and Q.

The circuit can therefore be reduced as shown below



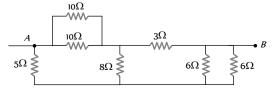

(d) Potential difference between A and B  

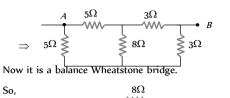
$$V_A - V_B = 1 \times 1.5$$
  
 $\Rightarrow V_A - 0 = 1.5V \Rightarrow V_A = 1.5V$   
Potential difference between B and C  
 $V_B - V_C = 1 \times 2.5 = 2.5V$   
 $\Rightarrow 0 - V_C = 2.5V \Rightarrow V_C = -2.5V$   
Potential difference between C and D  
 $V_C - V_D = -2V \Rightarrow -2.5 - V_D = -2 \Rightarrow V_D = -0.5V.$ 

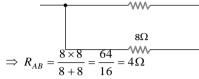
**29.** (b) The given circuit can be simplifies as follows

28.



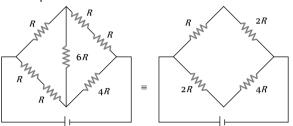

**30.** (b) 
$$dQ = Idt \Rightarrow Q = \int_{t=2}^{t=3} Idt = \left[ 2\int_{2}^{3} tdt + 3\int_{2}^{3} t^{2}dt \right]$$
  
 $= \left[ t^{2} \right]_{2}^{3} + \left[ t^{3} \right]_{2}^{3} = (9-4) + (27-8) = 5 + 19 = 24C.$   
**31.** (d)  $i = \frac{E_{1} + E_{2} + E_{3} + \dots + E_{n}}{(r_{1} + r_{2} + r_{3} + \dots + r_{n})}$   
 $= 15(r_{1} + r_{2} + r_{3} + \dots + r_{n})$ 


$$=\frac{1.5(r_1+r_2+r_3+\ldots+r_n)}{(r_1+r_2+r_3+\ldots+r_n)}=1.5A.$$


**32.** (a) Balancing length is independent of the cross sectional area of the wire.

**33.** (a) 
$$\frac{R_1}{R_2} = \frac{(1 + \alpha t_1)}{(1 + \alpha t_2)} \Rightarrow \frac{10}{R_2} = \frac{(1 + 5 \times 10^{-3} \times 20)}{(1 + 5 \times 10^{-3} \times 120)} \Rightarrow R_2 \approx 15\Omega$$
  
Also  $\frac{i_1}{i_2} = \frac{R_2}{R_1} \Rightarrow \frac{30}{i_2} = \frac{15}{10} \Rightarrow i_2 = 20 \, mA$ 

**34.** (b) The given circuit can be simplified as follows

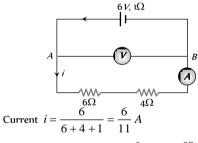







35.

(c) The equivalent network is




Clearly, the network of resistances is a balanced Wheatstone bridge. So  $R_{AB}$  is given by

$$\frac{1}{R_{AB}} = \frac{1}{3R} + \frac{1}{6R} = \frac{2+1}{6R} = \frac{1}{2R} \implies R_{AB} = 2R$$

For maximum power transfer 
$$2R = 4\Omega \Rightarrow R = \frac{4}{2} = 2\Omega$$

(c) The given circuit can be redrawn as follows 36.



P.D. between *A* and *B*, 
$$V = \frac{6}{11} \times 10 = \frac{60}{11} V$$
.

**37.** (a) By using 
$$R = \rho \cdot \frac{l}{A}$$
; here  $A = \pi (r_2^2 - r_1^2)$ 

Outer radius r = 5cm

lnner radius 
$$r = 5 - 0.5 = 4.5 \ cm$$

$$r_{2} \int_{10 \ cm} \int_{10 \ cm} \frac{1}{\sqrt{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r}{1-\frac{r$$

and 
$$R_{XZY} = \frac{R}{2\pi r} \times r(2\pi - \alpha) = \frac{R}{2\pi}(2\pi - \alpha)$$
$$R_{eq} = \frac{R_{XWY}R_{XZY}}{R_{XWY} + R_{XZY}} = \frac{\frac{R\alpha}{2\pi} \times \frac{R}{2\pi}(2\pi - \alpha)}{\frac{R\alpha}{2\pi} + \frac{R(2\pi - \alpha)}{2\pi}} = \frac{R\alpha}{4\pi^2}(2\pi - \alpha)$$

- (d) Battery is short circuited so potential difference is zero. 39.
- (a) Let V be the potential of the junction as shown in figure. 40. Applying junction law, we have

**41.** (a) 
$$E = x \, l = i\rho \, l \Rightarrow i = \frac{E}{\rho l} = \frac{E}{\rho l} = \frac{2.4 \times 10^{-3}}{1.2 \times 5} = 4 \times 10^{-4} \, A$$

(b) When bulb glows with full intensity, then voltage across it will 42. be 1.5 V and voltage across 3  $\Omega$  resistance will be 4.5 V.

$$\begin{array}{c}
6 V \\
\hline
4.5 V \longrightarrow \leftarrow 1.5 V \longrightarrow \\
3\Omega & \chi & R \\
\hline
WW & & & & & & \\
\end{array}$$

Current through 3  $\Omega$  resistance  $i = \bigcup_{3}^{5} E 1.5A$ Same current will flow between X and Y

So 
$$V_{XY} = iR_{XY} \implies 1.5 = 1.5R_{XY} \implies R_{XY} = 1\Omega$$

(a) In figure (b) current through  $R_2 = i - \frac{i}{10} = \frac{9i}{10}$ 43.

Potential difference across  $R_2$  = Potential difference across R

$$\Rightarrow R_2 \times \frac{9}{10} i = R \times \frac{i}{10} \text{ i.e. } R_2 = \frac{R}{9} = \frac{11}{9} \Omega$$

$$R_{eq} = \frac{R_2 \times R}{(R_2 + R)} = \frac{\frac{11}{9} \times \frac{11}{1}}{\frac{11}{9} + \frac{11}{1}} = \frac{11}{10} \Omega$$

$$\text{Total circuit resistance} = \frac{11}{10} + R_1 = R = 11 \Rightarrow R_1 = 9.9\Omega$$

(a) Let *I* be the original length of wire and x be its length stretched 44. uniformly such that final length is 1.5 /

Then 
$$4R = \rho \frac{(l-x)}{A} + \rho \frac{(0.5l+x)}{A'}$$
 where  $A' = \frac{x}{(0.5l+x)} A$ 

$$\therefore 4\rho \frac{l}{A} = \rho \frac{l-x}{A} + \rho \frac{(0.5l+x)^2}{xA}$$
  
or  $4l = l-x + \frac{1}{4} \frac{l^2}{x} + \frac{x^2}{x} + \frac{lx}{x}$  or  $\frac{x}{l} = \frac{1}{8}$ 

**45.** (b) In series : Potential difference  $\propto R$ 

When only S is closed  $V_1 = \frac{3}{4}E = 0.75E$ When only S is closed  $V_2 = \frac{6}{7}E = 0.86E$ 

and when both S and S are closed combined resistance of 6R and 3R is 2R

$$\therefore \qquad V_3 = \left(\frac{2}{3}\right)E = 0.67E \implies V_2 > V_1 > V_3$$

**46.** (c)

$$i\Omega = 3i_{1} - 2i_{xy}$$

$$i\Omega = i\Omega = i_{xy}$$

$$i\Omega = i_{xy}$$

$$i\Omega = i_{xy}$$

$$iQ = i_{xy}$$

Solving (i), (ii) and (iii),  $i_{xy} = 2A$ 

**47.** (b) Let *n* be the number of wrongly connected cells. Number of cells helping one another = (12 - n)Total e.m.f. of such cells = (12 - n)ETotal e.m.f. of cells opposing = nEResultant e.m.f. of battery = (12 - n)E - nE = (12 - 2n)ETotal resistance of cells = 12r

(: resistance remains same irrespective of connections of

cells)

With additional cells

(a) Total e.m.f. of cells when additional cells help battery = (12  $-2n)\ E+2E$ 

Total resistance = 12r + 2r = 14r

$$\therefore \frac{(12-2n)E+2E}{14r} = 3 \qquad \dots \dots (i)$$

(b) Similarly when additional cells oppose the battery

$$\frac{(12-2n)E-2E}{14r} = 2 \quad \dots \dots (ii)$$

Solving (i) and (ii), n = 1

**48.** (a) All the conductors have equal lengths. Area of cross-section of A is  $\{(\sqrt{3} a)^2 - (\sqrt{2} a)^2\} = a^2$ 

Similarly area of cross-section of B = Area of cross-section of C = a

Hence according to formula  $R = \rho \frac{l}{A}$ ; resistances of all the conductors are equal *i.e.* R = R = R

**49.** (b) Resistance of *CD* arm =  $2r \cos 72^{\circ} = 0.62r$ Resistance of CBFC branch

Because the star circuit is symmetrical about the line AH $\therefore$  Equivalent resistance between A and H

$$\frac{1}{R_{eq}} = \frac{1}{R'} + \frac{1}{R'} \Rightarrow R_{eq} = \frac{R'}{2} = \frac{1.946}{2}r = 0.973r$$

$$(i - i_{1} - i_{2})$$

$$K_{eq} = \frac{(i - i_{1} - i_{2})}{K}$$

52.

(a)

$$(i - i_{1} - i_{2}) \xrightarrow{E} (i - i_{1} - i_{2})$$

$$(i - i_{1}) \xrightarrow{F} i$$

$$(i - i_{1}) \xrightarrow{F} i$$

$$(i - i_{1}) \xrightarrow{F} i$$

$$(i - i_{2}) \xrightarrow{F} i$$

$$(i - i_{1}) \xrightarrow{F} i$$

$$(i - i_{2}) \xrightarrow{F} i$$

Applying Kirchoff's law in mesh ABCDA

$$-10(i-i_1)-10i_2+20i_1=0 \implies 3i_1-i_2=i$$
 .....(i)

and in mesh BEFCB

$$-20(i-i_1-i_2)+10(i_1+i_2)+10i_2=0$$

 $\Rightarrow \quad 3i_1 + 4i_2 = 2i \qquad \dots \dots (ii)$ 

- From equation (i) and (ii)  $i_1 = \frac{2i}{5}, i_2 = \frac{i}{5} \Longrightarrow i_{AD} = \frac{2i}{5}$
- **51.** (d) Let the current in 12  $\Omega$  resistance is *i* Applying loop theorem in closed mesh *AEFCA*  $12i = -E + E = 0 \quad \therefore i = 0$

(b) Current flowing in the circuit 
$$i = \frac{E}{R} = \frac{10-4}{20+10} = \frac{1}{5}A$$

P.D. across 
$$AC = \frac{1}{5} \times 20 = 4V$$
  
P.D. across  $AN = 4 + 4 = 8V$ 

**53.** (a) If two resistances are 
$$R_1$$
 and  $R_2$  then

$$S = R_{1} + R_{2} \text{ and } P = \frac{R_{1}R_{2}}{(R_{1} + R_{2})}$$
  
From given condition  $S = nP$  i.e.  $(R_{1} + R_{2}) = n\left(\frac{R_{1}R_{2}}{R_{1} + R_{2}}\right)$ 
$$\Rightarrow (R_{1} + R_{2})^{2} = n R_{1}R_{2} \Rightarrow (R_{1} - R_{2})^{2} + 4R_{1}R_{2} = nR_{1}R_{2}$$
So  $n = 4 + \frac{(R_{1} - R_{2})^{2}}{R_{1}R_{2}}$ . Hence minimum value of  $n$  is 4.

54. (b) Voltage sensitivity  $= \frac{\text{Current sensitivity}}{\text{Resistance of galvanometer G}}$ 

$$\Rightarrow G = \frac{10}{2} = 5 \Omega.$$
  
Here  $i_g$  = Full scale deflection current  $= \frac{150}{10} = 15 mA.$   
 $V$  = Voltage to be measured = 150 × 1 = 150 V.  
Hence  $R = \frac{V}{i_g} - G = \frac{150}{15 \times 10^{-3}} - 5 = 9995 \Omega.$ 

# **Graphical Questions**

**1.** (a) For ohmic resistance  $V \propto i \Rightarrow V = Ri$  (here *R* is constant)

2.

(d)

From the curve it is clear that slopes at points *A*, *B*, *C*, *D* have following order A > B > C > D. and also resistance at any point equals to slope of the *V*-*i* 

curve. So order of resistance at three points will be  $R_A > R_B > R_C > R_D$ 

**3.** (a) Slope of the *V-i* curve at any point equal to resistance at that point. From the curve slope for T > slope for T

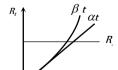
 $\Rightarrow R_{T_1} > R_{T_2}$  . Also at higher temperature resistance will be higher so T > T

**4.** (c) For portion *CD* slope of the curve is negative *i.e.* resistance be negative.

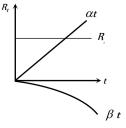
**5.** (d) Slope of *V-i* curve 
$$= R\left(=\frac{\rho l}{A}\right)$$
. But in given curve axis of *i*

and *V* are interchanged. So slope of given curve  $=\frac{1}{R}\left(=\frac{A}{\rho l}\right)$ *i.e.* with the increase in length of the wire. Slope of the curve

will decrease.


6. (c) 
$$E = \frac{iR}{L} = \frac{i\rho}{A} = \frac{neAv_d\rho}{A} \implies v_d \propto E$$
 (Straight line)  
 $P = i^2 R = \left(\frac{EA}{\rho}\right)^2 R \implies P \propto E^2$  (Symmetric parabola)

Also 
$$P \propto i^2$$
 (parabola)


Hence all graphs a, b, d are correct and c is incorrect.

- 7. (b) When we move in the direction of the current in a uniform conductor, the potential difference decreases linearly. When we pass through the cell, from it's negative to it's positive terminal, the potential increases by an amount equal to it's potential difference. This is less than it's emf, as there is some potential drop across it's internal resistance when the cell is driving current.
- **8.** (b) Since the value of *R* continuously increases, both  $\alpha$  and  $\beta$  must be positive.

Actually the components of the given equation are as follows



It  $\alpha$  is positive,  $\beta$  is negative, the component will be shown in the following graph.



In this case, the value of R will not increase continuously. Hence the correct option is (c).

- 9. (d) Slope of *V*-*i* curve = resistance. Hence  $R = \frac{1}{1} = 1\Omega$
- **10.** (a) At point *A* the slope of the graph will be negative. Hence resistance is negative.
- **11.** (b) E.m.f. is the value of voltage, when no current is drawn from the circuit so E = 2V. Also  $r = \text{slope} = \frac{2}{5} = 0.4\Omega$

$$\frac{V}{R+G} = i_g \implies \frac{V}{R_V} = i_g; \text{ where } R = R + G = \text{Total resistance}$$

$$\Rightarrow R_V = \frac{V}{i_g} \implies R_V \propto V$$

12

13.

14.

(a) According to ohm's law V = iR  $\Rightarrow \log_e V = \log_e i + \log_e R \Rightarrow \log_e i = \log_e V - \log_e R$ The graph between  $\log_e I$  and  $\log_e V$  will be a straight line which cut  $\log_e V$  axis and it's gradient will be positive.

(c) As we know, for conductors resistance 
$$\propto$$
 Temperature.  
From figure  $R \propto T \Rightarrow \tan\theta \propto T \Rightarrow \tan\theta = kT$  .... (i)  
and  $R \propto T \Rightarrow \tan(90 - \theta) \propto T \Rightarrow \cot\theta = kT$  .....(ii)  
From equation (i) and (ii)  $k(T_2 - T_1) = (\cot\theta - \tan\theta)$ 

$$(T_2 - T_1) = \left(\frac{\cos\theta}{\sin\theta} - \frac{\sin\theta}{\cos\theta}\right) = \frac{(\cos^2\theta - \sin^2\theta)}{\sin\theta\cos\theta} = 2\cot 2\theta$$
$$\Rightarrow (T_1 - T) \propto \cot 2\theta$$

**15.** (b) Let resistivity at a distance 'x' from left end be  $\rho = (\rho_0 + ax)$ . Then electric field intensity at a distance 'x' from left end will be equal to  $E = \frac{i\rho}{A} = \frac{i(\rho_0 + ax)}{A}$  where *i* is the current flowing through the conductor. It means  $E \propto \rho$  or *E* varies linearly with distance 'x'. But at x = 0, *E* has non-zero value. Hence (*b*) is correct.

**16.** (d) At an instant approach the student will choose  $\tan \theta$  will be the right answer. But it is to be seen here the curve makes the angle  $\theta$  with the *V*-axis. So it makes an angle  $(90 - \theta)$  with the *i*-axis.

So resistance = slope = tan  $(90 - \theta) = \cot \theta$ .

- **17.** (d) Short circuited current  $i = \frac{nE}{nr} = \frac{E}{r}$  *i.e. i* doesn't depend upon *n*.
- **18.** (b) Here internal resistance is given by the slope of graph *i.e.*  $\frac{x}{y}$ .

But conductance 
$$=\frac{1}{\text{Resistance}} = \frac{y}{x}$$

- 19. (a)  $R_{Parallel} < R_{Series}$ . From graph it is clear that slope of the line *A* is lower than the slope of the line *B*. Also slope = resistance, so line *A* represents the graph for parallel combination.
- **20.** (b) To make range n times, the galvanometer resistance should be G/n, where G is initial resistance.

#### Assertion and Reason

UNIVERSAL

#### **1124 Current Electricity**

- (d) Resistivity of a semiconductor decreases with the temperature. The atoms of a semiconductor vibrate with larger amplitudes at higher temperatures thereby increasing it's conductivity not resistivity.
- (d) It is quite clear that in a battery circuit, the point of lowest potential is the negative terminal of the battery and the current flows from higher potential to lower potential.
- (b) The temperature co-efficient of resistance for metal is positive and that for semiconductor is negative.
   In metals free electrons (negative charge) are charge carriers

while in *P*-type semiconductors, holes (positive charge) are majority charge carriers.

4. (a) Here, 
$$E = 2V$$
,  $1 = \frac{2}{2} = 1A$  and  $r = 1\Omega$ 

Therefore,  $V = E - ir = 2 - 1 \times 1 = 1V$ 

- 5. (a) It is clear that electrons move in all directions haphazardly in metals. When an electric field is applied, each free electron acquire a drift velocity. There is a net flow of charge, which constitute current. In the absence of electric field this is impossible and hence, there is no current.
- 6. (c) The metallic body of the electrical appliances is connected to the third pin which is connected to the earth. This is a safety precaution and avoids eventual electric shock. By doing this the extra charge flowing through the metallic body is passed to earth and avoid shocks. There is nothing such as reducing of the heating of connecting wires by three pin connections.
- 7. (b) On increasing temperature of wire the kinetic energy of free electrons increase and so they collide more rapidly with each other and hence their drift velocity decreases. Also when temperature increases, resistivity increase and resistivity is inversely proportional to conductivity of material.
- 8. (c) In a conductor there are large number of free electrons. When we close the circuit, the electric field is established instantly with the speed of electromagnetic wave which cause electron drift at every portion of the circuit. Due to which the current is set up in the entire circuit instantly. The current which is set up does not wait for the electrons flow from one end of the conductor to the another end. It is due to this reason, the electric bulb glows immediately when switch is on.
- **9.** (a) Resistance wire  $R = \rho \frac{l}{A}$ . where  $\rho$  is resistivity of material which does not depend on the geometry of wire. Since when wire is banded, resistivity, length and area of cross-section do not change, therefore resistance of wire also remain same.
- 10. (c) The resistance of the galvanometer is fixed. In meter bridge experiments, to protect the galvanometer from a high current, high resistance is connected to the galvanometer in order to protect it from damage.
- (a) Voltameter measures current indirectly in terms of mass of ions deposited and electrochemical equivalent of the substance

 $\left(I = \frac{m}{Zt}\right)$ . Since value of *m* and *Z* are measured to 3rd

decimal place and 5th decimal place respectively. The relative error in the measurement of current by voltmeter will be very small as compared to that when measured by ammeter directly.

- 12. (a) When current flows through a conductor it always remains uncharged, hence no electric field is produced outside it.
- 13. (b) Here assertion and reason both are correct but the reason is not the correct explanation of assertion.

14. (a) Sensitivity  $\propto \frac{1}{\text{Potential gradient}} \propto (\text{Length of wire})$ 

- 15. (a) If either the e.m.f. of the driver cell or potential difference across the whole potentiometer wire is lesser than the e.m.f. of the experimental cell, then balance point will not obtained.
- 16. (d) Because there is no special attractive force that keeps a person stuck with a high power line. The actual reason is that a current of the order of 0.05 *A* or even less is enough to bring disorder in our nervous system. As a result of it, the affected person may lose temporarily his ability to exercise his nervous control to get himself free from the high power line.
- (a) Due to high electrical conductivity of copper, it conducts the current without offering much resistance. The copper being diamagnetic material does not get magnetised due to current through it and hence does not disturb the current in the circuit.

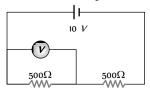
- Figure shows a simple potentiometer circuit for measuring a small l. e.m.f. produced by a thermocouple. The meter wire PQ has a resistance 5  $\Omega$  and the driver cell has an e.m.f. of 2 V. If a balance point is obtained 0.600 m along PQ when measuring an e.m.f. of 6.00 mV, what is the value of resistance R
  - 995 $\Omega$ (a)

2.

- 2 V(b) 1995 Ω
- (c) 2995 Ω  $0.600 m \rightarrow$
- (d) None of these Thermocouple A car has a fresh battery of e.m.f. 12  $\forall$  and  $\bigtriangledown$  armal resistance of 6.00 mV
- 0.05  $\Omega$ . If the starter motor draws a current of 90 A, the terminal voltage when the starter is on will be
  - (a) 12 V (b) 10.5 V (c) 8.5 V
  - (d) 7.5 V
- If the balance point is obtained at the 35<sup>+</sup> cm in a metre bridge the 3. resistances in the left and right gaps are in the ratio of
  - (b) 13:7 (a) 7:13 (c) 9:11 (d) 11:9
- Find the equivalent resistance across the terminals of source of e.m.f. 4. 24 V for the circuit shown in figure
  - 10Ω 6Ω (a) 15 Ω ı5Ω (b) 10 Ω h ۸۸۸ ≥8Ω  $5 \Omega$ (c) sΩ F-24V

(d) 
$$4 \Omega$$

- In the circuit shown in figure, switch  $\overline{S}$  is initially closed and S is 5. open. Find V - VıΩ 5Ω
  - h (a) 4 V
  - 10*UF* (b)  $8 \nu$


(c) 12 V  
(d) 16 V  

$$S_2 = 3\Omega$$
  
 $3\Omega$   
 $3D$ 

- The figure here shows a portion  $d \vdash a \operatorname{circuit}^{S_1}$  What are the 6. magnitude and direction of the current *i* in the lower right-hand wire
  - 1A (a) 7 A

(b) 8 A 
$$2A \rightarrow$$

- (c) 6 A (d) 2A3A4A
- A carbon resistor has colour strips as violet, yellow brown and 7. golden. The resistance is
  - (a) 641 Ω (b) 741 Ω
  - (c) 704 Ω (d) 407 Ω
- 8. A voltmeter of resistance 1000  $\Omega$  is connected across a resistance of 500  $\Omega$  in the given circuit. What will be the reading of voltmeter

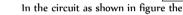


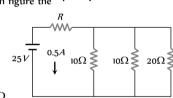


0

(a) 1V

- (c) 6 V
- (d) 4 V
- A beam contains 2  $\times$  10 doubly charged positive ions per cubic 9. centimeter, all of which are moving with a speed of 10 m/s. The current density is

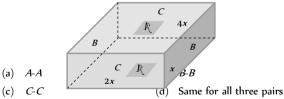

Self Evaluation Test -19


- (a) 6.4 *A*/*m* (b) 3.2 A/m (c) 1.6 A/m
  - (d) None of these
- In the circuit shown, the reading of ammeter when switch S is open 10. and when switch S is closed respectively are
  - (a) 3 A and 4 A
  - 4 *A* and 5 *A* (b)
  - (c) 5 *A* and 6 *A*
  - (d) 6 A and 7 A

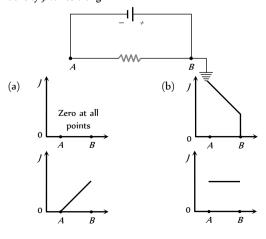
11.

12.

13.







20 l

2O

- (a) Resistance  $R = 46 \Omega$
- (b) Current through 20  $\Omega$  resistance is 0.1 A
- Potential difference across the middle resistance is 2 V(c)
- (d) All option are correct
- In figure shows a rectangular block with dimensions x, 2x and 4x. Electrical contacts can be made to the block between opposite pairs of faces (for example, between the faces labelled A-A, B-B and C-C). Between which two faces would the maximum electrical resistance be obtained (A-A : Top and bottom faces, B-B : Left and right faces, *C*-*C* : Front and rear faces)



A battery is connected to a uniform resistance wire AB and B is earthed. Which one of the graphs below shows how the current density / varies along AB



| UNIVERSAL<br>SELF SCORER | 1126 Current Electricity |  |
|--------------------------|--------------------------|--|
| (c)                      | (d)                      |  |

14. A cylindrical metal wire of length *I* and cross sections area *S*, has resistance *R*, conductance *G*, conductivity  $\sigma$  and resistivity  $\rho$ . Which one of the following expressions for  $\sigma$  is valid

(a) 
$$\frac{GR}{\rho}$$
 (b)  $\frac{\rho R}{G}$   
(c)  $\frac{GS}{l}$  (d)  $\frac{Rl}{S}$ 

- **15.** A potential divider is used to give outputs of 4 V and 8 V from a 12 V source. Which combination of resistances, (R, R, R) gives the correct voltages ? R : R : R
  - (a) 2:1:2 +12V  $R_3$  +8V
  - (b) 1:1:1 R<sub>2</sub>
  - (c) 2:2:1
  - (d) 1:1:2 0 Volt

16.

(a) 4:1

(b) 1:4

- Find equivalent resistance between A and B (a) R(b)  $\frac{3R}{4}$ (c)  $\frac{R}{2}$ (d) 2R(d) 2R(e) R(f) R
- **17.** Following figure shows four situations in which positive and negative charges moves horizontally through a region and gives the rate at which each charge moves. Rank the situations according to the effective current through the region greatest first

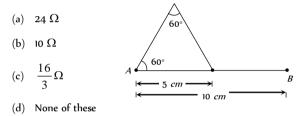
$$\begin{array}{c} \textcircled{i} \\ \hline 7C/sec \end{array} \xrightarrow{3C/sec} \begin{array}{c} \textcircled{i} \\ (i) \\ (a) \\ (a) \\ (i) \\ (b) \\ (i) \\ (i) \end{array} \xrightarrow{(ii)} \begin{array}{c} 2C/sec \\ 4C/sec \\ (b) \\ (b) \\ (i) \\$$

**18.** *A* and *B* are two square plates of same metal and same thickness but length of *B* is twice that of *A*. Ratio of resistances of *A* and *B* is

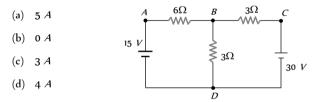
across the metre wire is  $10 \ mV/m \times 1m = 10 \ mV$ . The

upto 0.03 A by connecting a shunt of resistance 4r across it and into an ammeter reading upto 0.06 A when a shunt of resistance *r* is connected across it. What is the maximum current which can be sent through this galvanometer if no shunt is used

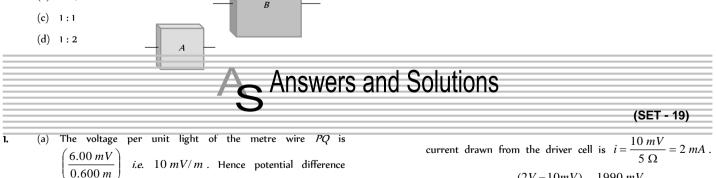
19.

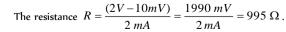

21.

+4V


- (a) 0.01 A (b) 0.02 A
- (c) 0.03 A (d) 0.04 A
- **20.** Two conductors are made of the same material and have the same length. Conductor *A* is a solid wire of diameter 1.0 *mm*. Conductor *B* is a hollow tube of outside diameter 2.0 *mm* and inside diameter 1.0 *mm*. The resistance ratio R/R will be

A moving coil galvanometer is converted into an ammeter reading

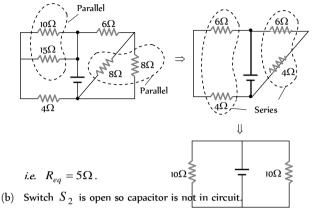

- (a) 1 (b) 2
- (c) 3 (d) 4
- A wire has resistance of 24  $\Omega$  is bent in the following shape. The effective resistance between *A* and *B* is

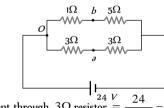



**22.** In the circuit shown in figure, find the current through the branch *BD* 



- 23. A battery of 24 cells, each of emf 1.5 V and internal resistance  $2\Omega$  is to be connected in order to send the maximum current through a 12  $\Omega$  resistor. The correct arrangement of cells will be
  - (a) 2 rows of 12 cells connected in parallel
  - (b) 3 rows of 8 cells connected in parallel
  - (c) 4 rows of 6 cells connected in parallel
  - (d) All of these




2. (d) 
$$V = E - i.r = 12 - 90 \times 0.05 = 12 - 4.5 = 7.5 V$$
.  
3. (a) Using Wheatstone principle  $\frac{P}{Q} = \frac{R}{S} = \frac{R}{100 - l}$   
 $= \frac{35}{100 - l} = \frac{35}{100 - l} = \frac{35}{100 - l} = \frac{7}{100 - l}$ 

100-35 65 13

4. (c) Given circuit can be reduced to a simple circuit as shown in figures below





Current through  $3\Omega$  resistor  $=\frac{24}{3+3}=4$  A

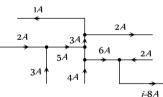
Let potential of point ' ${\cal O}$  shown in fig. is  $\,V_{O}\,$ 

then using ohm's law

5.

6.

8.


$$V_{O} - V_{a} = 3 \times 4 = 12V$$
 ....(i)

Now current through  $5\Omega$  resistor  $=\frac{24}{5+1}=4A$ 

So 
$$V_0 - V_b = 4 \times 1 = 4$$
 V .....(ii)

From equation (i) and (ii)  $V_b - V_a = 12 - 4 = 8V$ .

(b) By using Kirchoff's junction law as shown below.



7. (b) Using standard colour codes Violet = 7, yellow = 4, brown = 1 and gold = 5 % (tolerance) So  $R = 74 \times 10^{1} \pm 5\% = 740 \pm 5\%$ So its value will be nearest to  $741\Omega$ .

(d) Total current through the circuit

$$i = \frac{10}{\frac{1000}{3} + 500} = \frac{3}{250} A$$

Now voltmeter reading  $= i_v \times R_V = \frac{2}{3} \times \frac{3}{250} \times 500 = 4V.$ 

9. (a) 
$$J = nqv = n(ze)v = \frac{2 \times 10^8 \times 2 \times 1.6 \times 10^{-19} \times 10^5}{(10^{-2})^3} = 6.4 \text{ A/m}$$

**10.** (b) When switch *S* is open total current through ammeter.

$$i = \frac{20}{(3+2)} = 4A$$
.

11.

When switch is closed 
$$i = \frac{20}{3 + (2|| 2)} = 5A$$
.

(d)  
R  

$$25 V$$
  
 $0.5 A$   
 $(10\Omega)$   
 $10\Omega)$   
 $20\Omega)$   
 $20\Omega)$   
 $R') \Rightarrow$   
 $\frac{1}{R'} = \frac{1}{10} + \frac{1}{10} + \frac{1}{20} \Rightarrow R' = \frac{20}{5} = 4 \Omega$   
Now using ohm's law  $i = \frac{25}{R+R'} \Rightarrow 0.5 = \frac{25}{R+4}$   
 $\Rightarrow R + 4 = \frac{25}{0.5} = 50 \Rightarrow R = 50 - 4 = 46 \Omega$   
Current through  $20\Omega$  resistor  $= \frac{0.5 \times 5}{20 + 5} = \frac{2.5}{25} = 0.1A$   
Potential difference across middle resistor  
 $=$  Potential difference across  $20\Omega = 20 \times 0.1 = 2V$ 

**12.** (c) Let  $\rho$  is the resistivity of the material Resistance for contact *A*-*A* 

$$R_{AA} = \rho \frac{x}{2x \times 4x} = \frac{\rho}{8x}$$

а

13.

Similar for contacts *B-B* and *C-C* are respectively

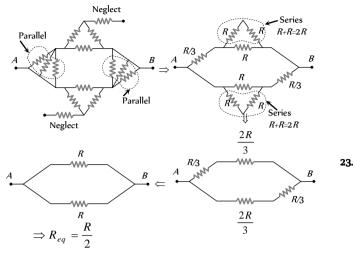
$$R_{BB} = \rho \cdot \frac{2x}{x \times 4x} = \frac{\rho}{2x} = \frac{4\rho}{8x}$$
  
and 
$$R_{CC} = \rho \cdot \frac{4x}{x \times 2x} = \frac{2\rho}{x} = \frac{16\rho}{8x}$$

It is clear maximum resistance will be for contact C-C.

(d) Wire *AB* is uniform so current through wire *AB* at every across section will be same. Hence current density J(=i/A) at every point of the wire will be same.

14. (a) Conductivity 
$$\sigma = \frac{1}{\rho}$$
 .....(i)

and conductance  $G = \frac{1}{R}$ 


 $\Rightarrow$  *GR* = 1 From equation (i) and (ii)  $\sigma = \frac{GR}{\rho}$ 

15. (b) Resistors are connected in series. So current through each resistor will be same

.....(ii)

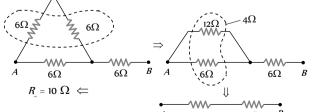
$$\Rightarrow i = \frac{12 - 8}{R_3} = \frac{8 - 4}{R_2} = \frac{4 - 0}{R_1} \Rightarrow \frac{4}{R_3} = \frac{4}{R_2} = \frac{4}{R_1}$$
  
So,  $R_1 : R_2 : R_3 :: 1 : 1 : 1$ .

16. (c) Given circuit can be redrawn as follows



**17.** (c) For figure (i)  $i_1 = 7A$ 

For figure (ii)  $i_2 = 4 + 3 = 7A$ For figure (iii)  $i_3 = 5 + 2 = 7A$ For figure (iv)  $i_4 = 6 - 1 = 5A$ 


**18.** (c) 
$$R_A = \frac{\rho l}{l \times t} = \frac{\rho}{t}$$
 and  $R_B = \frac{\rho \times 2l}{2l \times t} = \frac{\rho}{t}$  *i.e.*  $\frac{R_A}{R_B} = 1:1$ 

**19.** (b) 
$$\frac{i_g}{i} = \frac{S}{G+S} \Rightarrow i_g G = (i-i_g)S$$
  
 $\therefore i_g G = (0.03 - i_g)4r$  .....(i)  
and  $i_g G = (0.06 - i_g)r$  .....(ii)  
From (i) and (ii)  
 $0.12 - 4i_g = 0.06 - i_g \Rightarrow i_g = 0.02A$ .


**20.** (c) For conductor A,  $R_A = \frac{\rho l}{\pi r_1^2}$ ,

For conductor *B*, 
$$R_B = \frac{\rho l}{\pi (r_2^2 - r_1^2)}$$

**21.** (b) Given resistance of each part will be



**22.** (a) The current in the circuit are assumed as shown in the fig.



Applying KVL along the loop *ABDA*, we get -6i - 3i + 15 = 0 or 2i + i = 5 .....(i)

(1)

Applying KVL along the loop *BCDB*, we get

-3(i-i) - 30 + 3i = 0 or -i + 2i = 10 .....(ii)

Solving equation (i) and (ii) for *i*, we get i = 5 A. Suppose *m* rows are connected in parallel and each row

(a) Suppose *m* rows are connected in parallel and each row contains *n* identical cells (each cell having E = 15 *V* and  $r = 2\Omega$ ) For maximum current in the external resistance *R*, the

necessary condition is 
$$R = \frac{nn}{m}$$

=

\*\*\*

$$\Rightarrow 12 = \frac{n \times 2}{m} \Rightarrow n = 6m \qquad \dots (i)$$

Total cells =  $24 = n \times m$  ..... (ii) On solving equations (i) and (ii) n = 12 and m = 2*i.e.* 2 rows of 12 cells are connected in parallel.